Celebrating 20 Years on the Web
TODAY IN SCIENCE HISTORY ®
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “The conservation of natural resources is the fundamental problem. Unless we solve that problem it will avail us little to solve all others.”
more quiz questions >>
Thumbnail of Sir James Dewar (source)
Sir James Dewar
(20 Sep 1842 - 27 Mar 1923)

Scottish chemist and physicist whose research with materials at low-temperature led him to devise the Dewar vacuum-insulated double-walled flask, now familiar as the thermos bottle. He also was a co-inventor of cordite smokeless explosive powder.


SOLID AIR

from The Manufacturer and Builder (1893)

James Dewar in his laboratory.
James Dewar (source)

Professor Dewar communicated to the Royal Society at its meeting on Thursday, March 9, [1893] a most interesting development of his experiments upon air at very low temperatures. Our readers are already familiar with the fact that he has liquefied air at ordinary atmospheric pressure. He has now succeeded in freezing it into a clear, transparent solid.

The precise nature of this solid is at present doubtful, and can be settled only by further research. It maybe a jelly of solid nitrogen containing liquid oxygen, much as calves’ foot jelly contains water diffused in solid gelatine, or it may be a true ice of liquid air, in which both oxygen and nitrogen exist in the solid form. The doubt arises from the fact that Professor Dewar has not been able by his utmost efforts to solidify pure oxygen, which, unlike other gases, resists the cold produced by its own evaporation under the air pump.

Nitrogen, on the other hand, can be frozen with comparative ease. It has already been proved that in the evaporation of liquid air nitrogen boils off first. Consequently the liquid is continually becoming richer in that constituent which has hitherto resisted solidification. It thus becomes a question whether the cold produced is sufficiently great to solidify oxygen, or whether its mixture with oxygen raises its freezing point, or whether it is not really frozen at all, but merely entangled among the particles of solid nitrogen, like the rose water in cold cream.

The result, whatever may be its precise nature, has been attained by use of the most powerful appliances at command—a double set of the vacuum screens already described in our columns, combined with two powerful air pumps. Upon either view of its constitution, the new solid is in the highest degree interesting and hopeful.

Image added (not in original article) from Sir Thomas Edward Thorpe, History of Chemistry: From 1850 to 1910 (1910), 98 (source). Text from the magazine The Manufacturer and Builder: A Practical Journal of Industrial Progress (Jul 1893), 147. (source)


See also:

Nature bears long with those who wrong her. She is patient under abuse. But when abuse has gone too far, when the time of reckoning finally comes, she is equally slow to be appeased and to turn away her wrath. (1882) -- Nathaniel Egleston, who was writing then about deforestation, but speaks equally well about the danger of climate change today.
Carl Sagan Thumbnail Carl Sagan: In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) ...(more by Sagan)

Albert Einstein: I used to wonder how it comes about that the electron is negative. Negative-positive—these are perfectly symmetric in physics. There is no reason whatever to prefer one to the other. Then why is the electron negative? I thought about this for a long time and at last all I could think was “It won the fight!” ...(more by Einstein)

Richard Feynman: It is the facts that matter, not the proofs. Physics can progress without the proofs, but we can't go on without the facts ... if the facts are right, then the proofs are a matter of playing around with the algebra correctly. ...(more by Feynman)
Quotations by: • Albert Einstein • Isaac Newton • Lord Kelvin • Charles Darwin • Srinivasa Ramanujan • Carl Sagan • Florence Nightingale • Thomas Edison • Aristotle • Marie Curie • Benjamin Franklin • Winston Churchill • Galileo Galilei • Sigmund Freud • Robert Bunsen • Louis Pasteur • Theodore Roosevelt • Abraham Lincoln • Ronald Reagan • Leonardo DaVinci • Michio Kaku • Karl Popper • Johann Goethe • Robert Oppenheimer • Charles Kettering  ... (more people)

Quotations about: • Atomic  Bomb • Biology • Chemistry • Deforestation • Engineering • Anatomy • Astronomy • Bacteria • Biochemistry • Botany • Conservation • Dinosaur • Environment • Fractal • Genetics • Geology • History of Science • Invention • Jupiter • Knowledge • Love • Mathematics • Measurement • Medicine • Natural Resource • Organic Chemistry • Physics • Physician • Quantum Theory • Research • Science and Art • Teacher • Technology • Universe • Volcano • Virus • Wind Power • Women Scientists • X-Rays • Youth • Zoology  ... (more topics)

- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.