TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 24 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Nature does nothing in vain when less will serve; for Nature is pleased with simplicity and affects not the pomp of superfluous causes.”
more quiz questions >>
Home > Dictionary of Science Quotations > Scientist Names Index D > John Dalton Quotes > Atomic Theory

Thumbnail of John Dalton (source)
John Dalton
(c. 6 Sep 1766 - 27 Jul 1844)

English chemist, physicist, meteorologist and teacher.


John Dalton Quotes on Atomic Theory (6 quotes)

>> Click for 11 Science Quotes by John Dalton

Berzelius' symbols are horrifying. A young student in chemistry might as soon learn Hebrew as make himself acquainted with them... They appear to me equally to perplex the adepts in science, to discourage the learner, as well as to cloud the beauty and simplicity of the atomic theory.
— John Dalton
Quoted in H. E. Roscoe, 'Presidential Address', Reports of the British Association for the Advancement of Science, 57th report, 1887, 7.
Science quotes on:  |  Atomic Theory (16)  |  Beauty (313)  |  Chemistry (376)  |  Cloud (111)  |  Discourage (14)  |  Equally (129)  |  Hebrew (10)  |  Himself (461)  |  Learn (672)  |  Simplicity (175)  |  Soon (187)  |  Student (317)  |  Symbol (100)  |  Theory (1015)  |  Young (253)

Chemical analysis and synthesis go no farther than to the separation of particles one from another, and to their reunion. No new creation or destruction of matter is within the reach of chemical agency. We might as well attempt to introduce a new planet into the solar system, or to annihilate one already in existence, as to create or destroy a particle of hydrogen.
— John Dalton
A New System of Chemical Philosophy (1808), Vol. 1, 212.
Science quotes on:  |  Already (226)  |  Analysis (244)  |  Annihilate (10)  |  Atomic Theory (16)  |  Attempt (266)  |  Chemical (303)  |  Conservation Of Matter (7)  |  Create (245)  |  Creation (350)  |  Destroy (189)  |  Destruction (135)  |  Existence (481)  |  Farther (51)  |  Hydrogen (80)  |  Introduce (63)  |  Matter (821)  |  New (1273)  |  Particle (200)  |  Planet (402)  |  Reach (286)  |  Separation (60)  |  Solar System (81)  |  Synthesis (58)  |  System (545)

In all chemical investigations, it has justly been considered an important object to ascertain the relative weights of the simples which constitute a compound. But unfortunately the enquiry has terminated here; whereas from the relative weights in the mass, the relative weights of the ultimate particles or atoms of the bodies might have been inferred, from which their number and weight in various other compounds would appear, in order to assist and to guide future investigations, and to correct their results. Now it is one great object of this work, to shew the importance and advantage of ascertaining the relative weights of the ultimate particles, both of simple and compound bodies, the number of simple elementary particles which constitute one compound particle, and the number of less compound particles which enter into the formation of one more compound particle.
If there are two bodies, A and B, which are disposed to combine, the following is the order in which the combinations may take place, beginning with the most simple: namely,
1 atom of A + 1 atom of B = 1 atom of C, binary
1 atom of A + 2 atoms of B = 1 atom of D, ternary
2 atoms of A + 1 atom of B = 1 atom of E, ternary
1 atom of A + 3 atoms of B = 1 atom of F, quaternary
3 atoms of A and 1 atom of B = 1 atom of G, quaternary
— John Dalton
A New System of Chemical Philosophy (1808), Vol. 1, 212-3.
Science quotes on:  |  Advantage (144)  |  Ascertain (41)  |  Atom (381)  |  Atomic Theory (16)  |  Beginning (312)  |  Binary (12)  |  Both (496)  |  Chemical (303)  |  Combination (150)  |  Combine (58)  |  Compound (117)  |  Consider (428)  |  Constitute (99)  |  Elementary (98)  |  Enquiry (89)  |  Enter (145)  |  Formation (100)  |  Future (467)  |  Great (1610)  |  Guide (107)  |  Importance (299)  |  Investigation (250)  |  Mass (160)  |  More (2558)  |  Most (1728)  |  Number (710)  |  Object (438)  |  Order (638)  |  Other (2233)  |  Particle (200)  |  Result (700)  |  Simple (426)  |  Two (936)  |  Ultimate (152)  |  Unfortunately (40)  |  Various (205)  |  Weight (140)  |  Work (1402)

The ultimate particles of all homogeneous bodies are perfectly alike in weight, figure &c.
— John Dalton
A New System of Chemical Philosophy (1808), Vol. 1, 143.
Science quotes on:  |  Alike (60)  |  Atomic Theory (16)  |  Figure (162)  |  Homogeneous (17)  |  Particle (200)  |  Ultimate (152)  |  Weight (140)

There are three distinctions in the kinds of bodies, or three states, which have more especially claimed the attention of philosophical chemists; namely, those which are marked by the terms elastic fluids, liquids, and solids. A very familiar instance is exhibited to us in water, of a body, which, in certain circumstances, is capable of assuming all the three states. In steam we recognise a perfectly elastic fluid, in water, a perfect liquid, and in ice of a complete solid. These observations have tacitly led to the conclusion which seems universally adopted, that all bodies of sensible magnitude, whether liquid or solid, are constituted of a vast number of extremely small particles, or atoms of matter bound together by a force of attraction.
— John Dalton
A New System of Chemical Philosophy (1808), Vol. 1, 141.
Science quotes on:  |  Atom (381)  |  Atomic Theory (16)  |  Attention (196)  |  Attraction (61)  |  Body (557)  |  Bound (120)  |  Capable (174)  |  Certain (557)  |  Chemist (169)  |  Circumstance (139)  |  Circumstances (108)  |  Claim (154)  |  Complete (209)  |  Conclusion (266)  |  Distinction (72)  |  Fluid (54)  |  Force (497)  |  Ice (58)  |  Kind (564)  |  Liquid (50)  |  Magnitude (88)  |  Marked (55)  |  Matter (821)  |  Molecular Force (2)  |  More (2558)  |  Number (710)  |  Observation (593)  |  Particle (200)  |  Perfect (223)  |  Small (489)  |  Solid (119)  |  State (505)  |  Steam (81)  |  Term (357)  |  Terms (184)  |  Together (392)  |  Vast (188)  |  Water (503)

When an element A has an affinity for another substance B, I see no mechanical reason why it should not take as many atoms of B as are presented to it, and can possibly come into contact with it (which may probably be 12 in general), except so far as the repulsion of the atoms of B among themselves are more than a match for the attraction of an atom of A. Now this repulsion begins with 2 atoms of B to 1 atom of A, in which case the 2 atoms of B are diametrically opposed; it increases with 3 atoms of B to 1 of A, in which case the atoms are only 120° asunder; with 4 atoms of B it is still greater as the distance is then only 90; and so on in proportion to the number of atoms. It is evident from these positions, that, as far as powers of attraction and repulsion are concerned (and we know of no other in chemistry), binary compounds must first be formed in the ordinary course of things, then ternary and so on, till the repulsion of the atoms of B (or A, whichever happens to be on the surface of the other), refuse to admit any more.
— John Dalton
Observations on Dr. Bostock's Review of the Atomic Principles of Chemistry', Nicholson's Journal, 1811, 29, 147.
Science quotes on:  |  Affinity (27)  |  Atom (381)  |  Atomic Theory (16)  |  Attraction (61)  |  Begin (275)  |  Binary (12)  |  Chemistry (376)  |  Compound (117)  |  Concern (239)  |  Contact (66)  |  Course (413)  |  Diametrically (6)  |  Distance (171)  |  Element (322)  |  Evident (92)  |  First (1302)  |  Form (976)  |  General (521)  |  Greater (288)  |  Happen (282)  |  Increase (225)  |  Know (1538)  |  Match (30)  |  Mechanical (145)  |  More (2558)  |  Must (1525)  |  Number (710)  |  Ordinary (167)  |  Other (2233)  |  Possibly (111)  |  Power (771)  |  Present (630)  |  Proportion (140)  |  Reason (766)  |  Refuse (45)  |  Repulsion (7)  |  See (1094)  |  Still (614)  |  Substance (253)  |  Surface (223)  |  Themselves (433)  |  Thing (1914)  |  Why (491)


See also:

Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.