TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 24 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Genius is two percent inspiration, ninety-eight percent perspiration.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index D > Category: Diffraction

Diffraction Quotes (5 quotes)

Question: Account for the delicate shades of colour sometimes seen on the inside of an oyster shell. State and explain the appearance presented when a beam of light falls upon a sheet of glass on which very fine equi-distant parallel lines have been scratched very close to one another.
Answer: The delicate shades are due to putrefaction; the colours always show best when the oyster has been a bad one. Hence they are considered a defect and are called chromatic aberration.
The scratches on the glass will arrange themselves in rings round the light, as any one may see at night in a tram car.
Genuine student answer* to an Acoustics, Light and Heat paper (1880), Science and Art Department, South Kensington, London, collected by Prof. Oliver Lodge. Quoted in Henry B. Wheatley, Literary Blunders (1893), 182, Question 27. (*From a collection in which Answers are not given verbatim et literatim, and some instances may combine several students' blunders.)
Science quotes on:  |  Aberration (10)  |  Account (195)  |  Answer (389)  |  Appearance (145)  |  Arrange (33)  |  Bad (185)  |  Beam (26)  |  Best (467)  |  Call (781)  |  Car (75)  |  Chromatic (4)  |  Closeness (4)  |  Color (155)  |  Consider (428)  |  Consideration (143)  |  Defect (31)  |  Delicate (45)  |  Due (143)  |  Examination (102)  |  Explain (334)  |  Explanation (246)  |  Fall (243)  |  Fine (37)  |  Glass (94)  |  Howler (15)  |  Inside (30)  |  Light (635)  |  Line (100)  |  Night (133)  |  Oyster (12)  |  Parallel (46)  |  Present (630)  |  Putrefaction (4)  |  Question (649)  |  Ring (18)  |  Scratch (14)  |  See (1094)  |  Seeing (143)  |  Shade (35)  |  Sheet (8)  |  Shell (69)  |  Show (353)  |  State (505)  |  Themselves (433)  |  Tram (3)  |  Will (2350)

In describing a protein it is now common to distinguish the primary, secondary and tertiary structures. The primary structure is simply the order, or sequence, of the amino-acid residues along the polypeptide chains. This was first determined by Sanger using chemical techniques for the protein insulin, and has since been elucidated for a number of peptides and, in part, for one or two other small proteins. The secondary structure is the type of folding, coiling or puckering adopted by the polypeptide chain: the a-helix structure and the pleated sheet are examples. Secondary structure has been assigned in broad outline to a number of librous proteins such as silk, keratin and collagen; but we are ignorant of the nature of the secondary structure of any globular protein. True, there is suggestive evidence, though as yet no proof, that a-helices occur in globular proteins, to an extent which is difficult to gauge quantitatively in any particular case. The tertiary structure is the way in which the folded or coiled polypeptide chains are disposed to form the protein molecule as a three-dimensional object, in space. The chemical and physical properties of a protein cannot be fully interpreted until all three levels of structure are understood, for these properties depend on the spatial relationships between the amino-acids, and these in turn depend on the tertiary and secondary structures as much as on the primary. Only X-ray diffraction methods seem capable, even in principle, of unravelling the tertiary and secondary structures.
Co-author with G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C. Phillips
'A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-ray Analysis', Nature (1958) 181, 662.
Science quotes on:  |  Acid (83)  |  Amino Acid (12)  |  Author (175)  |  Capable (174)  |  Chemical (303)  |  Common (447)  |  Depend (238)  |  Difficult (263)  |  Distinguish (168)  |  Evidence (267)  |  Extent (142)  |  First (1302)  |  Form (976)  |  Helix (10)  |  Ignorant (91)  |  Insulin (9)  |  Method (531)  |  Molecule (185)  |  Nature (2017)  |  Number (710)  |  Object (438)  |  Occur (151)  |  Order (638)  |  Other (2233)  |  Physical (518)  |  Polypeptide (2)  |  Primary (82)  |  Principle (530)  |  Proof (304)  |  Protein (56)  |  Ray (115)  |  Relationship (114)  |  Residue (9)  |  Frederick Sanger (6)  |  Sequence (68)  |  Silk (14)  |  Small (489)  |  Space (523)  |  Structure (365)  |  Technique (84)  |  Three-Dimensional (11)  |  Turn (454)  |  Two (936)  |  Type (171)  |  Understood (155)  |  Way (1214)  |  X-ray (43)  |  X-ray Diffraction (5)

The whole subject of the X rays is opening out wonderfully, Bragg has of course got in ahead of us, and so the credit all belongs to him, but that does not make it less interesting. We find that an X ray bulb with a platinum target gives out a sharp line spectrum of five wavelengths which the crystal separates out as if it were a diffraction grating. In this way one can get pure monochromatic X rays. Tomorrow we search for the spectra of other elements. There is here a whole new branch of spectroscopy, which is sure to tell one much about the nature of an atom.
Letter to his mother (18 May 1913). In J. L. Heilbron (ed.), H. G. J. Moseley: The Life and Letters of an English Physicist 1887-1915 (1974), 205.
Science quotes on:  |  Atom (381)  |  Belong (168)  |  Sir Lawrence Bragg (16)  |  Branch (155)  |  Bulb (10)  |  Course (413)  |  Crystal (71)  |  Element (322)  |  Find (1014)  |  Interesting (153)  |  Nature (2017)  |  New (1273)  |  Other (2233)  |  Platinum (6)  |  Pure (299)  |  Ray (115)  |  Search (175)  |  Separate (151)  |  Spectroscopy (11)  |  Spectrum (35)  |  Subject (543)  |  Target (13)  |  Tell (344)  |  Tomorrow (63)  |  Wavelength (10)  |  Way (1214)  |  Whole (756)  |  X-ray (43)

While the biological properties of deoxypentose nucleic acid suggest a molecular structure containing great complexity, X-ray diffraction studies described here … show the basic molecular configuration has great simplicity. [Co-author with A.R. Stokes, H.R. Wilson. Thanks include to “… our colleagues R.E. Franklin, R.G. Gosling … for discussion.”]
From 'Molecular Structure of Deoxypentose Nucleic Acids', Nature (25 Apr 1953), 171, No. 4356, 738. (Note: in W.F. Bynum and Roy Porter (eds.), Oxford Dictionary of Scientific Quotations (2005), 226, this quote is listed under Rosalind Elsie Franklin and cited, incorrectly, as from “Rosalind Franklin and R. G. Gosling, 'Molecular Structures of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid', Nature, 1953, 171, 741.” However, the Franklin and Gosling article on p.741 is the second of two pages titled 'Molecular Configuration in Sodium Thymonucleate'.)
Science quotes on:  |  Acid (83)  |  Author (175)  |  Basic (144)  |  Biological (137)  |  Colleague (51)  |  Complexity (121)  |  Configuration (8)  |  Discussion (78)  |  DNA (81)  |  Rosalind Franklin (18)  |  Great (1610)  |  Include (93)  |  Molecular Structure (9)  |  Nucleic Acid (23)  |  Ray (115)  |  Show (353)  |  Simplicity (175)  |  Structure (365)  |  Thank (48)  |  Thanks (26)  |  X-ray (43)  |  X-ray Crystallography (12)  |  X-ray Diffraction (5)

With crystals we are in a situation similar to an attempt to investigate an optical grating merely from the spectra it produces... But a knowledge of the positions and intensities of the spectra does not suffice for the determination of the structure. The phases with which the diffracted waves vibrate relative to one another enter in an essential way. To determine a crystal structure on the atomic scale, one must know the phase differences between the different interference spots on the photographic plate, and this task may certainly prove to be rather difficult.
Physikalische Zeitschrift (1913), 14. Translated in Walter Moore, Schrödinger. Life and Thought (1989), 73.
Science quotes on:  |  Atom (381)  |  Attempt (266)  |  Certainly (185)  |  Crystal (71)  |  Determination (80)  |  Determine (152)  |  Difference (355)  |  Different (595)  |  Difficult (263)  |  Enter (145)  |  Essential (210)  |  Intensity (34)  |  Interference (22)  |  Investigate (106)  |  Investigation (250)  |  Know (1538)  |  Knowledge (1647)  |  Merely (315)  |  Must (1525)  |  Optical (11)  |  Phase (37)  |  Photograph (23)  |  Position (83)  |  Prove (261)  |  Scale (122)  |  Situation (117)  |  Spectrum (35)  |  Structure (365)  |  Task (152)  |  Vibrate (7)  |  Wave (112)  |  Way (1214)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.