TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 25 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index A > Category: Activation

Activation Quotes (6 quotes)

I watched Baeyer activating magnesium with iodine for a difficult Grignard reaction; it was done in a test tube, which he watched carefully as he moved it gently by hand over a flame for three quarters of an hour. The test tube was the apparatus to Baeyer.
In Richard Willstätter, Arthur Stoll (ed. of the original German) and Lilli S. Hornig (trans.), From My Life: The Memoirs of Richard Willstätter (1958), 140.
Science quotes on:  |  Apparatus (70)  |  Adolf von Baeyer (4)  |  Care (203)  |  Carefully (65)  |  Difficult (263)  |  Flame (44)  |  Gentle (9)  |  Hand (149)  |  Hour (192)  |  Iodine (7)  |  Magnesium (4)  |  Move (223)  |  Reaction (106)  |  Test (221)  |  Test Tube (13)  |  Watch (118)  |  Watching (11)

I would clarify that by ‘animal’ I understand a being that has feeling and that is capable of exercising life functions through a principle called soul; that the soul uses the body's organs, which are true machines, by virtue of its being the principal cause of the action of each of the machine's parts; and that although the placement that these parts have with respect to one another does scarcely anything else through the soul's mediation than what it does in pure machines, the entire machine nonetheless needs to be activated and guided by the soul in the same way as an organ, which, although capable of rendering different sounds through the placement of the parts of which it is composed, nonetheless never does so except through the guidance of the organist.
'La Mechanique des Animaux', in Oeuvres Diverses de Physique et de Mechanique (1721), Vol. 1, 329. Quoted in Jacques Roger, Keith R. Benson (ed.), Robert Ellrich (trans.), The Life Sciences in Eighteenth-Century French Thought, (1997), 273-4.
Science quotes on:  |  Action (342)  |  Animal (651)  |  Being (1276)  |  Body (557)  |  Call (781)  |  Capability (44)  |  Capable (174)  |  Cause (561)  |  Clarification (8)  |  Composition (86)  |  Difference (355)  |  Different (595)  |  Exercise (113)  |  Feeling (259)  |  Function (235)  |  Guidance (30)  |  Life (1870)  |  Machine (271)  |  Mediation (4)  |  Never (1089)  |  Organ (118)  |  Part (235)  |  Principal (69)  |  Principle (530)  |  Pure (299)  |  Respect (212)  |  Scarcely (75)  |  Soul (235)  |  Sound (187)  |  Through (846)  |  Understand (648)  |  Understanding (527)  |  Use (771)  |  Virtue (117)  |  Way (1214)

It seems to me that the view toward which we are tending is that the specificity in gene action is always a chemical specificity, probably the production of enzymes which guide metabolic processes along particular channels. A given array of genes thus determines the production of a particular kind of protoplasm with particular properties—such, for example, as that of responding to surface forces by the formation of a special sort of semipermeable membrane, and that of responding to trivial asymmetries in the play of external stimuli by polarization, with consequent orderly quantitative gradients in all physiologic processes. Different genes may now be called into play at different points in this simple pattern, either through the local formation of their specific substrates for action, or by activation of a mutational nature. In either case the pattern becomes more complex and qualitatively differentiated. Successive interactions of differentiated regions and the calling into play of additional genes may lead to any degree of complexity of pattern in the organism as a largely self-contained system. The array of genes, assembled in the course of evolution, must of course be one which determines a highly self­regulatory system of reactions. On this view the genes are highly specific chemically, and thus called into play only under very specific conditions; but their morphological effects, if any, rest on quantitative influences of immediate or remote products on growth gradients, which are resultants of all that has gone on before in the organism.
In 'Genetics of Abnormal Growth in the Guinea Pig', Cold Spring Harbor Symposia on Quantitative Biology (1934), 2, 142.
Science quotes on:  |  Action (342)  |  Asymmetry (6)  |  Become (821)  |  Call (781)  |  Channel (23)  |  Chemical (303)  |  Complex (202)  |  Complexity (121)  |  Condition (362)  |  Consequent (19)  |  Course (413)  |  Degree (277)  |  Determine (152)  |  Different (595)  |  Effect (414)  |  Enzyme (19)  |  Evolution (635)  |  Force (497)  |  Formation (100)  |  Gene (105)  |  Gradient (2)  |  Growth (200)  |  Guide (107)  |  Immediate (98)  |  Influence (231)  |  Interaction (47)  |  Kind (564)  |  Lead (391)  |  Membrane (21)  |  Metabolism (15)  |  More (2558)  |  Morphological (3)  |  Must (1525)  |  Mutation (40)  |  Nature (2017)  |  Orderly (38)  |  Organism (231)  |  Pattern (116)  |  Physiology (101)  |  Point (584)  |  Polarization (4)  |  Product (166)  |  Production (190)  |  Protoplasm (13)  |  Qualitative (15)  |  Quantitative (31)  |  Reaction (106)  |  Remote (86)  |  Rest (287)  |  Self (268)  |  Simple (426)  |  Simplicity (175)  |  Special (188)  |  Specific (98)  |  Stimulus (30)  |  Successive (73)  |  Surface (223)  |  System (545)  |  Through (846)  |  Trivial (59)  |  View (496)

It was obvious—to me at any rate—that the answer was to why an enzyme is able to speed up a chemical reaction by as much as 10 million times. It had to do this by lowering the energy of activation—the energy of forming the activated complex. It could do this by forming strong bonds with the activated complex, but only weak bonds with the reactants or products.
Quoted In Thomas Hager, Force of Nature: The Life of Linus Pauling (1995), 284.
Science quotes on:  |  Answer (389)  |  Bond (46)  |  Chemical (303)  |  Chemical Reaction (17)  |  Complex (202)  |  Do (1905)  |  Energy (373)  |  Enzyme (19)  |  Formation (100)  |  Forming (42)  |  Lowering (4)  |  Obvious (128)  |  Product (166)  |  Reactant (2)  |  Reaction (106)  |  Speed (66)  |  Strong (182)  |  Time (1911)  |  Weak (73)  |  Why (491)

Our atom of carbon enters the leaf, colliding with other innumerable (but here useless) molecules of nitrogen and oxygen. It adheres to a large and complicated molecule that activates it, and simultaneously receives the decisive message from the sky, in the flashing form of a packet of solar light; in an instant, like an insect caught by a spider, it is separated from its oxygen, combined with hydrogen and (one thinks) phosphorus, and finally inserted in a chain, whether long or short does not matter, but it is the chain of life. All this happens swiftly, in silence, at the temperature and pressure of the atmosphere, and gratis: dear colleagues, when we learn to do likewise we will be sicut Deus [like God], and we will have also solved the problem of hunger in the world.
Levi Primo and Raymond Rosenthal (trans.), The Periodic Table (1975, 1984), 227-228. In this final section of his book, Levi imagines the life of a carbon atom. He calls this his first “literary dream”. It came to him at Auschwitz.
Science quotes on:  |  Activate (3)  |  Adherence (2)  |  Atmosphere (117)  |  Atom (381)  |  Carbon (68)  |  Catch (34)  |  Chain (51)  |  Colleague (51)  |  Collision (16)  |  Combination (150)  |  Complicated (117)  |  Decisive (25)  |  Do (1905)  |  Enter (145)  |  Flash (49)  |  Form (976)  |  God (776)  |  Gratis (2)  |  Happen (282)  |  Happening (59)  |  Hunger (23)  |  Hydrogen (80)  |  Innumerable (56)  |  Insect (89)  |  Insertion (2)  |  Instant (46)  |  Large (398)  |  Leaf (73)  |  Learn (672)  |  Learning (291)  |  Life (1870)  |  Light (635)  |  Likewise (2)  |  Long (778)  |  Matter (821)  |  Message (53)  |  Molecule (185)  |  Nitrogen (32)  |  Other (2233)  |  Oxygen (77)  |  Packet (3)  |  Phosphorus (18)  |  Photon (11)  |  Photosynthesis (21)  |  Pressure (69)  |  Problem (731)  |  Receive (117)  |  Separation (60)  |  Short (200)  |  Silence (62)  |  Simultaneity (3)  |  Sky (174)  |  Solar (8)  |  Solution (282)  |  Spider (14)  |  Sun (407)  |  Swiftness (5)  |  Temperature (82)  |  Think (1122)  |  Uselessness (22)  |  Will (2350)  |  World (1850)

Reagents are regarded as acting by virtue of a constitutional affinity either for electrons or for nuclei... the terms electrophilic (electron-seeking) and nucleophilic (nucleus-seeking) are suggested... and the organic molecule, in the activation necessary for reaction, is therefore required to develop at the seat of attack either a high or low electron density as the case may be.
'Significance of Tautomerism and of the Reactions of Aromatic Compounds in the Electronic Theory of Organic Relations', Journal of the Chemical Society (1933), 136, 1121, fn.
Science quotes on:  |  Affinity (27)  |  Attack (86)  |  Density (25)  |  Develop (278)  |  Electron (96)  |  High (370)  |  Low (86)  |  Molecule (185)  |  Necessary (370)  |  Nomenclature (159)  |  Nucleus (54)  |  Organic (161)  |  Reaction (106)  |  Reagent (8)  |  Regard (312)  |  Required (108)  |  Term (357)  |  Terms (184)  |  Virtue (117)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing
on Blue Sky.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.