TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 24 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “A people without children would face a hopeless future; a country without trees is almost as helpless.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index D > Category: Differential

Differential Quotes (7 quotes)

Natura non facit saltum or, Nature does not make leaps… If you assume continuity, you can open the well-stocked mathematical toolkit of continuous functions and differential equations, the saws and hammers of engineering and physics for the past two centuries (and the foreseeable future).
From Benoit B. Mandelbrot and Richard Hudson, The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward (2004,2010), 85-86.
Science quotes on:  |  Assume (43)  |  Century (319)  |  Continuity (39)  |  Continuous (83)  |  Differential Equation (18)  |  Engineering (188)  |  Equation (138)  |  Foreseeable (3)  |  Function (235)  |  Future (467)  |  Hammer (26)  |  Leap (57)  |  Mathematics (1395)  |  Natura Non Facit Saltum (3)  |  Nature (2017)  |  Open (277)  |  Past (355)  |  Physic (515)  |  Physics (564)  |  Saw (160)  |  Two (936)

A modern branch of mathematics, having achieved the art of dealing with the infinitely small, can now yield solutions in other more complex problems of motion, which used to appear insoluble. This modern branch of mathematics, unknown to the ancients, when dealing with problems of motion, admits the conception of the infinitely small, and so conforms to the chief condition of motion (absolute continuity) and thereby corrects the inevitable error which the human mind cannot avoid when dealing with separate elements of motion instead of examining continuous motion. In seeking the laws of historical movement just the same thing happens. The movement of humanity, arising as it does from innumerable human wills, is continuous. To understand the laws of this continuous movement is the aim of history. … Only by taking an infinitesimally small unit for observation (the differential of history, that is, the individual tendencies of man) and attaining to the art of integrating them (that is, finding the sum of these infinitesimals) can we hope to arrive at the laws of history.
War and Peace (1869), Book 11, Chap. 1.
Science quotes on:  |  Absolute (153)  |  Aim (175)  |  Ancient (198)  |  Appear (122)  |  Arise (162)  |  Arising (22)  |  Arrive (40)  |  Art (680)  |  Attain (126)  |  Avoid (123)  |  Branch (155)  |  Chief (99)  |  Complex (202)  |  Concept (242)  |  Conception (160)  |  Condition (362)  |  Conform (15)  |  Continuity (39)  |  Continuous (83)  |  Correct (95)  |  Deal (192)  |  Element (322)  |  Error (339)  |  Examine (84)  |  Find (1014)  |  Happen (282)  |  Historical (70)  |  History (716)  |  Hope (321)  |  Human (1512)  |  Human Mind (133)  |  Humanity (186)  |  Individual (420)  |  Inevitable (53)  |  Infinite (243)  |  Infinitesimal (30)  |  Innumerable (56)  |  Insoluble (15)  |  Integrate (8)  |  Law (913)  |  Man (2252)  |  Mathematics (1395)  |  Mind (1377)  |  Modern (402)  |  More (2558)  |  Motion (320)  |  Movement (162)  |  Observation (593)  |  Other (2233)  |  Problem (731)  |  Seek (218)  |  Separate (151)  |  Small (489)  |  Solution (282)  |  Solution. (53)  |  Sum (103)  |  Tendency (110)  |  Thing (1914)  |  Understand (648)  |  Unit (36)  |  Unknown (195)  |  Will (2350)  |  Yield (86)

But just as much as it is easy to find the differential of a given quantity, so it is difficult to find the integral of a given differential. Moreover, sometimes we cannot say with certainty whether the integral of a given quantity can be found or not.
Webmaster has looked and found no citation, and no example, in books with this wording, earlier than in a list of quotes, without citation, in Baumslag Benjamin, Fundamentals Of Teaching Mathematics At University Level (2000), 214. The original would be in native French, so different translations are possible. Can you help?
Science quotes on:  |  Certainty (180)  |  Difficult (263)  |  Easy (213)  |  Find (1014)  |  Integral (26)  |  Quantity (136)  |  Say (989)

In our century the conceptions substitution and substitution group, transformation and transformation group, operation and operation group, invariant, differential invariant and differential parameter, appear more and more clearly as the most important conceptions of mathematics.
In Lapziger Berichte, No. 47 (1896), 261.
Science quotes on:  |  Appear (122)  |  Century (319)  |  Clearly (45)  |  Conception (160)  |  Group (83)  |  Important (229)  |  Invariant (10)  |  Mathematics (1395)  |  Modern Mathematics (50)  |  More (2558)  |  Most (1728)  |  Operation (221)  |  Parameter (4)  |  Substitution (16)  |  Transformation (72)

Physicists are, as a general rule, highbrows. They think and talk in long, Latin words, and when they write anything down they usually include at least one partial differential and three Greek letters.
In 'A Newsman Looks at Physicists', Physics Today (May 1948), 1, No. 1, 15.
Science quotes on:  |  Down (455)  |  General (521)  |  Greek (109)  |  Include (93)  |  Latin (44)  |  Letter (117)  |  Long (778)  |  Partial (10)  |  Physicist (270)  |  Rule (307)  |  Talk (108)  |  Think (1122)  |  Usually (176)  |  Word (650)  |  Write (250)

The actual evolution of mathematical theories proceeds by a process of induction strictly analogous to the method of induction employed in building up the physical sciences; observation, comparison, classification, trial, and generalisation are essential in both cases. Not only are special results, obtained independently of one another, frequently seen to be really included in some generalisation, but branches of the subject which have been developed quite independently of one another are sometimes found to have connections which enable them to be synthesised in one single body of doctrine. The essential nature of mathematical thought manifests itself in the discernment of fundamental identity in the mathematical aspects of what are superficially very different domains. A striking example of this species of immanent identity of mathematical form was exhibited by the discovery of that distinguished mathematician … Major MacMahon, that all possible Latin squares are capable of enumeration by the consideration of certain differential operators. Here we have a case in which an enumeration, which appears to be not amenable to direct treatment, can actually be carried out in a simple manner when the underlying identity of the operation is recognised with that involved in certain operations due to differential operators, the calculus of which belongs superficially to a wholly different region of thought from that relating to Latin squares.
In Presidential Address British Association for the Advancement of Science, Sheffield, Section A, Nature (1 Sep 1910), 84, 290.
Science quotes on:  |  Actual (118)  |  Actually (27)  |  Amenable (4)  |  Analogous (7)  |  Appear (122)  |  Aspect (129)  |  Belong (168)  |  Body (557)  |  Both (496)  |  Branch (155)  |  Build (211)  |  Building (158)  |  Calculus (65)  |  Capable (174)  |  Carry (130)  |  Case (102)  |  Certain (557)  |  Classification (102)  |  Comparison (108)  |  Connection (171)  |  Consideration (143)  |  Develop (278)  |  Different (595)  |  Direct (228)  |  Discernment (4)  |  Discovery (837)  |  Distinguish (168)  |  Distinguished (84)  |  Doctrine (81)  |  Domain (72)  |  Due (143)  |  Employ (115)  |  Enable (122)  |  Essential (210)  |  Evolution (635)  |  Example (98)  |  Exhibit (21)  |  Find (1014)  |  Form (976)  |  Frequent (26)  |  Fundamental (264)  |  Generalization (61)  |  Identity (19)  |  Include (93)  |  Independent (74)  |  Independently (24)  |  Induction (81)  |  Involve (93)  |  Involved (90)  |  Latin (44)  |  Percy Alexander MacMahon (3)  |  Major (88)  |  Manifest (21)  |  Manner (62)  |  Mathematician (407)  |  Mathematics (1395)  |  Method (531)  |  Nature (2017)  |  Nature Of Mathematics (80)  |  Observation (593)  |  Obtain (164)  |  Operation (221)  |  Operations (107)  |  Operator (4)  |  Physical (518)  |  Physical Science (104)  |  Possible (560)  |  Proceed (134)  |  Process (439)  |  Really (77)  |  Recognise (14)  |  Region (40)  |  Relate (26)  |  Result (700)  |  Simple (426)  |  Single (365)  |  Sometimes (46)  |  Special (188)  |  Species (435)  |  Square (73)  |  Strictly (13)  |  Strike (72)  |  Striking (48)  |  Subject (543)  |  Superficial (12)  |  Synthesis (58)  |  Synthesize (3)  |  Theory (1015)  |  Thought (995)  |  Treatment (135)  |  Trial (59)  |  Underlying (33)  |  Wholly (88)

Until now the theory of infinite series in general has been very badly grounded. One applies all the operations to infinite series as if they were finite; but is that permissible? I think not. Where is it demonstrated that one obtains the differential of an infinite series by taking the differential of each term? Nothing is easier than to give instances where this is not so.
As quoted and translated in Reinhold Remmert and Robert B. Burckel, Theory of Complex Functions: Readings in Mathematics (1991), 125. From the original French, “La théorie des séries infinies en général est justqu’à présent très mal fondée. On applique aux séries infinies toutes les opérations, come si elles aient finies; mais cela est-il bien permis? Je crois que non. Où est-il démonstré qu/on ontient la différentielle dune série infinie en prenant la différentiaella de chaque terme. Rien n’est plus facile que de donner des exemples où cela n’est pas juste.” In Oeuvres Complètes (1881), Vol. 2, 258.
Science quotes on:  |  Badly (32)  |  Easier (53)  |  Facile (4)  |  Finite (60)  |  General (521)  |  Ground (222)  |  Infinite (243)  |  Infinite Series (8)  |  Nothing (1000)  |  Obtain (164)  |  Operation (221)  |  Operations (107)  |  Permissible (9)  |  Plus (43)  |  Series (153)  |  Term (357)  |  Theory (1015)  |  Think (1122)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.