Celebrating 18 Years on the Web
TODAY IN SCIENCE HISTORY ®
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Environmental extremists ... wouldn’t let you build a house unless it looked like a bird’s nest.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index M > Category: Modern Mathematics

Modern Mathematics Quotes (36 quotes)

All the modern higher mathematics is based on a calculus of operations, on laws of thought. All mathematics, from the first, was so in reality; but the evolvers of the modern higher calculus have known that it is so. Therefore elementary teachers who, at the present day, persist in thinking about algebra and arithmetic as dealing with laws of number, and about geometry as dealing with laws of surface and solid content, are doing the best that in them lies to put their pupils on the wrong track for reaching in the future any true understanding of the higher algebras. Algebras deal not with laws of number, but with such laws of the human thinking machinery as have been discovered in the course of investigations on numbers. Plane geometry deals with such laws of thought as were discovered by men intent on finding out how to measure surface; and solid geometry with such additional laws of thought as were discovered when men began to extend geometry into three dimensions.
In Lectures on the Logic of Arithmetic (1903), Preface, 18-19.
Science quotes on:  |  Algebra (92)  |  Arithmetic (115)  |  Calculus (48)  |  Dimension (38)  |  Discovery (676)  |  Geometry (215)  |  Investigation (175)  |  Measurement (161)  |  Number (276)  |  Operation (118)  |  Solid (50)  |  Surface (101)  |  Teacher (119)  |  Thinking (231)  |  Track (14)  |  Understanding (325)  |  Wrong (138)

Euclid always contemplates a straight line as drawn between two definite points, and is very careful to mention when it is to be produced beyond this segment. He never thinks of the line as an entity given once for all as a whole. This careful definition and limitation, so as to exclude an infinity not immediately apparent to the senses, was very characteristic of the Greeks in all their many activities. It is enshrined in the difference between Greek architecture and Gothic architecture, and between Greek religion and modern religion. The spire of a Gothic cathedral and the importance of the unbounded straight line in modern Geometry are both emblematic of the transformation of the modern world.
In Introduction to Mathematics (1911), 119.
Science quotes on:  |  Activity (128)  |  Apparent (39)  |  Architecture (43)  |  Beyond (104)  |  Both (81)  |  Careful (24)  |  Cathedral (15)  |  Characteristic (94)  |  Contemplate (17)  |  Definite (42)  |  Definition (191)  |  Difference (246)  |  Draw (55)  |  Enshrine (2)  |  Entity (31)  |  Euclid (52)  |  Exclude (7)  |  Geometry (215)  |  Give (200)  |  Gothic (3)  |  Greek (71)  |  Immediately (21)  |  Importance (216)  |  Infinity (72)  |  Limitation (30)  |  Line (89)  |  Mention (23)  |  Modern (159)  |  Modern World (3)  |  Point (122)  |  Produce (100)  |  Religion (239)  |  Segment (6)  |  Sense (315)  |  Spire (5)  |  Straight Line (17)  |  Think (341)  |  Transformation (54)  |  Unbounded (5)  |  Whole (189)

Everybody praises the incomparable power of the mathematical method, but so is everybody aware of its incomparable unpopularity.
In Jahresbericht der Deutschen Mathematiker Vereinigung, Bd. 13, 17.
Science quotes on:  |  Aware (31)  |  Incomparable (12)  |  Mathematics (1149)  |  Method (230)  |  Power (358)  |  Praise (25)  |  Unpopular (3)

Generality of points of view and of methods, precision and elegance in presentation, have become, since Lagrange, the common property of all who would lay claim to the rank of scientific mathematicians. And, even if this generality leads at times to abstruseness at the expense of intuition and applicability, so that general theorems are formulated which fail to apply to a single special case, if furthermore precision at times degenerates into a studied brevity which makes it more difficult to read an article than it was to write it; if, finally, elegance of form has well-nigh become in our day the criterion of the worth or worthlessness of a proposition,—yet are these conditions of the highest importance to a wholesome development, in that they keep the scientific material within the limits which are necessary both intrinsically and extrinsically if mathematics is not to spend itself in trivialities or smother in profusion.
In Die Entwickdung der Mathematik in den letzten Jahrhunderten (1884), 14-15.
Science quotes on:  |  Abstruse (5)  |  Applicable (11)  |  Apply (76)  |  Article (22)  |  Brevity (7)  |  Claim (70)  |  Common (118)  |  Condition (160)  |  Criterion (18)  |  Degenerate (14)  |  Development (276)  |  Difficult (116)  |  Elegance (29)  |  Expense (15)  |  Fail (58)  |  Form (308)  |  Formulate (15)  |  General (156)  |  Generality (34)  |  Importance (216)  |  Intrinsic (12)  |  Intuition (57)  |  Count Joseph-Louis de Lagrange (24)  |  Limit (123)  |  Mathematician (364)  |  Mathematics (1149)  |  Method (230)  |  Necessary (147)  |  Point Of View (41)  |  Precision (50)  |  Presentation (17)  |  Profusion (3)  |  Property (123)  |  Proposition (80)  |  Rank (32)  |  Read (144)  |  Scientific (232)  |  Single (119)  |  Smother (3)  |  Special Case (6)  |  Spend (43)  |  Study (461)  |  Theorem (88)  |  Triviality (2)  |  Wholesome (7)  |  Worth (97)  |  Worthless (21)  |  Write (153)

I have said that mathematics is the oldest of the sciences; a glance at its more recent history will show that it has the energy of perpetual youth. The output of contributions to the advance of the science during the last century and more has been so enormous that it is difficult to say whether pride in the greatness of achievement in this subject, or despair at his inability to cope with the multiplicity of its detailed developments, should be the dominant feeling of the mathematician. Few people outside of the small circle of mathematical specialists have any idea of the vast growth of mathematical literature. The Royal Society Catalogue contains a list of nearly thirty- nine thousand papers on subjects of Pure Mathematics alone, which have appeared in seven hundred serials during the nineteenth century. This represents only a portion of the total output, the very large number of treatises, dissertations, and monographs published during the century being omitted.
In Presidential Address British Association for the Advancement of Science, Section A, (1910), Nature, 84, 285.
Science quotes on:  |  Achievement (150)  |  Advance (162)  |  Alone (101)  |  Appear (115)  |  Catalogue (4)  |  Century (130)  |  Circle (55)  |  Contain (67)  |  Contribution (60)  |  Cope (6)  |  Despair (27)  |  Detail (85)  |  Development (276)  |  Difficult (116)  |  Dissertation (2)  |  Dominant (14)  |  Energy (214)  |  Enormous (41)  |  Feel (165)  |  Glance (19)  |  Greatness (42)  |  Growth (122)  |  History (368)  |  Hundred (64)  |  Idea (577)  |  Inability (6)  |  Large (130)  |  List (10)  |  Literature (79)  |  Mathematician (364)  |  Mathematics (1149)  |  Monograph (5)  |  Multiplicity (8)  |  Nearly (26)  |  Nineteenth (6)  |  Number (276)  |  Oldest (8)  |  Omit (7)  |  Output (10)  |  Outside (48)  |  Paper (82)  |  People (388)  |  Perpetual (20)  |  Portion (24)  |  Pride (64)  |  Publish (33)  |  Pure Mathematics (63)  |  Recent (29)  |  Represent (41)  |  Royal Society (10)  |  Science (2043)  |  Serial (4)  |  Show (90)  |  Small (161)  |  Specialist (25)  |  Subject (235)  |  Thirty (6)  |  Thousand (152)  |  Total (36)  |  Treatise (32)  |  Vast (88)  |  Youth (75)

If a mathematician of the past, an Archimedes or even a Descartes, could view the field of geometry in its present condition, the first feature to impress him would be its lack of concreteness. There are whole classes of geometric theories which proceed not only without models and diagrams, but without the slightest (apparent) use of spatial intuition. In the main this is due, to the power of the analytic instruments of investigations as compared with the purely geometric.
In 'The Present Problems in Geometry', Bulletin American Mathematical Society (1906), 286.
Science quotes on:  |  Analytic (10)  |  Apparent (39)  |  Archimedes (53)  |  Class (83)  |  Compare (37)  |  Concreteness (4)  |  Condition (160)  |  René Descartes (81)  |  Diagram (13)  |  Due (20)  |  Feature (43)  |  Field (170)  |  First (313)  |  Geometric (5)  |  Geometry (215)  |  Impress (16)  |  Instrument (92)  |  Intuition (57)  |  Investigation (175)  |  Lack (77)  |  Main (27)  |  Mathematician (364)  |  Model (80)  |  Past (150)  |  Power (358)  |  Present (174)  |  Proceed (41)  |  Purely (28)  |  Slight (30)  |  Spatial (8)  |  Theory (690)  |  View (171)  |  Whole (189)

If we compare a mathematical problem with an immense rock, whose interior we wish to penetrate, then the work of the Greek mathematicians appears to us like that of a robust stonecutter, who, with indefatigable perseverance, attempts to demolish the rock gradually from the outside by means of hammer and chisel; but the modern mathematician resembles an expert miner, who first constructs a few passages through the rock and then explodes it with a single blast, bringing to light its inner treasures.
In Die Entwickelung der Mathematik in den letzten Jahrhunderten (1869), 9. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 114. From the original German, “Vergleichen wir ein mathematisches Problem mit einem gewaltigen Felsen, in dessen Inneres wir eindringen wollen, so erscheint die Arbeit der griechischen Mathematiker uns als die eines rüstigen Steinhauers, der mit Hammer und Meissel in unermüdlicher Ausdauer den Felsen langsam von aussen her zu zerbröckeln beginnt; der moderne Mathematiker aber als ein trefflicher Minirer, der diesen Felsen zunächst mit wenigen Gängen durchzieht, von denen aus er dann den Felsblock mit einem gewaltigem Schlage zersprengt und die Schätze des Inneren zu Tage fördert.”
Science quotes on:  |  Appear (115)  |  Attempt (121)  |  Blast (10)  |  Bring (90)  |  Chisel (2)  |  Compare (37)  |  Construct (40)  |  Demolish (4)  |  Expert (50)  |  Explode (7)  |  First (313)  |  Gradual (26)  |  Greek (71)  |  Hammer (21)  |  Immense (42)  |  Inner (39)  |  Interior (19)  |  Light (345)  |  Mathematician (364)  |  Mathematics (1149)  |  Means (171)  |  Miner (9)  |  Modern (159)  |  Outside (48)  |  Passage (20)  |  Penetrate (29)  |  Perseverance (20)  |  Problem (490)  |  Resemble (26)  |  Robust (7)  |  Rock (125)  |  Single (119)  |  Treasure (45)  |  Wish (92)  |  Work (626)

In Euclid each proposition stands by itself; its connection with others is never indicated; the leading ideas contained in its proof are not stated; general principles do not exist. In modern methods, on the other hand, the greatest importance is attached to the leading thoughts which pervade the whole; and general principles, which bring whole groups of theorems under one aspect, are given rather than separate propositions. The whole tendency is toward generalization. A straight line is considered as given in its entirety, extending both ways to infinity, while Euclid is very careful never to admit anything but finite quantities. The treatment of the infinite is in fact another fundamental difference between the two methods. Euclid avoids it, in modern mathematics it is systematically introduced, for only thus is generality obtained.
In 'Geometry', Encyclopedia Britannica (9th edition).
Science quotes on:  |  Admit (44)  |  Aspect (57)  |  Attach (13)  |  Avoid (52)  |  Both (81)  |  Bring (90)  |  Careful (24)  |  Connection (107)  |  Consider (80)  |  Contain (67)  |  Difference (246)  |  Entirety (4)  |  Euclid (52)  |  Exist (147)  |  Extend (41)  |  Fact (725)  |  Finite (31)  |  Fundamental (158)  |  General (156)  |  Generality (34)  |  Generalization (41)  |  Give (200)  |  Great (524)  |  Group (72)  |  Idea (577)  |  Importance (216)  |  Indicate (18)  |  Infinite (128)  |  Infinity (72)  |  Introduce (41)  |  Lead (158)  |  Method (230)  |  Modern (159)  |  Obtain (45)  |  On The Other Hand (32)  |  Pervade (9)  |  Principle (285)  |  Proof (243)  |  Proposition (80)  |  Quantity (64)  |  Separate (69)  |  Stand (107)  |  State (136)  |  Straight Line (17)  |  Systematically (7)  |  Tendency (54)  |  Theorem (88)  |  Thought (536)  |  Toward (45)  |  Treatment (100)  |  Whole (189)

In our century the conceptions substitution and substitution group, transformation and transformation group, operation and operation group, invariant, differential invariant and differential parameter, appear more and more clearly as the most important conceptions of mathematics.
In Lapziger Berichte, No. 47 (1896), 261.
Science quotes on:  |  Appear (115)  |  Century (130)  |  Clearly (41)  |  Conception (88)  |  Differential (7)  |  Group (72)  |  Important (202)  |  Invariant (7)  |  Mathematics (1149)  |  Operation (118)  |  Parameter (4)  |  Substitution (12)  |  Transformation (54)

Indeed the modern developments of mathematics constitute not only one of the most impressive, but one of the most characteristic, phenomena of our age. It is a phenomenon, however, of which the boasted intelligence of a “universalized” daily press seems strangely unaware; and there is no other great human interest, whether of science or of art, regarding which the mind of the educated public is permitted to hold so many fallacious opinions and inferior estimates.
In Lectures on Science, Philosophy and Arts (1908), 8.
Science quotes on:  |  Age (174)  |  Art (284)  |  Boast (21)  |  Characteristic (94)  |  Constitute (29)  |  Daily (29)  |  Development (276)  |  Educate (12)  |  Estimate (28)  |  Fallacy (25)  |  Great (524)  |  Hold (92)  |  Human (548)  |  Impressive (20)  |  Inferior (19)  |  Intelligence (165)  |  Interest (235)  |  Mathematics (1149)  |  Mind (743)  |  Modern (159)  |  Opinion (176)  |  Permit (30)  |  Phenomenon (276)  |  Press (21)  |  Public (93)  |  Regard (93)  |  Science (2043)  |  Unaware (4)

Induction and analogy are the special characteristics of modern mathematics, in which theorems have given place to theories and no truth is regarded otherwise than as a link in an infinite chain. “Omne exit in infinitum” is their favorite motto and accepted axiom.
In 'A Plea for the Mathematician', Nature, Vol. 1, 861. [The Latin phrase “Omne exit in infinitum” means “Everything goes to infinity”.
Science quotes on:  |  Accept (65)  |  Analogy (56)  |  Axiom (52)  |  Chain (50)  |  Characteristic (94)  |  Favorite (24)  |  Give (200)  |  Induction (59)  |  Infinite (128)  |  Link (41)  |  Mathematics (1149)  |  Modern (159)  |  Motto (28)  |  Otherwise (24)  |  Place (174)  |  Regard (93)  |  Special (74)  |  Theorem (88)  |  Theory (690)  |  Truth (914)

It is known that the mathematics prescribed for the high school [Gymnasien] is essentially Euclidean, while it is modern mathematics, the theory of functions and the infinitesimal calculus, which has secured for us an insight into the mechanism and laws of nature. Euclidean mathematics is indeed, a prerequisite for the theory of functions, but just as one, though he has learned the inflections of Latin nouns and verbs, will not thereby be enabled to read a Latin author much less to appreciate the beauties of a Horace, so Euclidean mathematics, that is the mathematics of the high school, is unable to unlock nature and her laws.
In Die Mathematik die Fackelträgerin einer neuen Zeit (1889), 37-38. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 112.
Science quotes on:  |  Appreciate (29)  |  Author (61)  |  Beauty (239)  |  Calculus (48)  |  Enable (44)  |  Euclid (52)  |  Function (128)  |  High School (11)  |  Horace (12)  |  Infinitesimal (15)  |  Inflection (3)  |  Insight (69)  |  Know (547)  |  Latin (33)  |  Law (513)  |  Learn (281)  |  Less (102)  |  Mathematics (1149)  |  Mechanism (52)  |  Modern (159)  |  Nature (1211)  |  Noun (3)  |  Prerequisite (6)  |  Prescribe (9)  |  Read (144)  |  Secure (20)  |  Theory (690)  |  Unable (24)  |  Unlock (5)

It is not only a decided preference for synthesis and a complete denial of general methods which characterizes the ancient mathematics as against our newer Science [modern mathematics]: besides this extemal formal difference there is another real, more deeply seated, contrast, which arises from the different attitudes which the two assumed relative to the use of the concept of variability. For while the ancients, on account of considerations which had been transmitted to them from the Philosophie school of the Eleatics, never employed the concept of motion, the spatial expression for variability, in their rigorous system, and made incidental use of it only in the treatment of phonoromically generated curves, modern geometry dates from the instant that Descartes left the purely algebraic treatment of equations and proceeded to investigate the variations which an algebraic expression undergoes when one of its variables assumes a continuous succession of values.
In 'Untersuchungen über die unendlich oft oszillierenden und unstetigen Functionen', Ostwald’s Klassiker der exacten Wissenschaften (1905), No. 153, 44-45. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 115. From the original German, “Nicht allein entschiedene Vorliebe für die Synthese und gänzliche Verleugnung allgemeiner Methoden charakterisiert die antike Mathematik gegenüber unserer neueren Wissenschaft; es gibt neben diesem mehr äußeren, formalen, noch einen tiefliegenden realen Gegensatz, welcher aus der verschiedenen Stellung entspringt, in welche sich beide zu der wissenschaftlichen Verwendung des Begriffes der Veränderlichkeit gesetzt haben. Denn während die Alten den Begriff der Bewegung, des räumlichen Ausdruckes der Veränderlichkeit, aus Bedenken, die aus der philosophischen Schule der Eleaten auf sie übergegangen waren, in ihrem strengen Systeme niemals und auch in der Behandlung phoronomisch erzeugter Kurven nur vorübergehend verwenden, so datiert die neuere Mathematik von dem Augenblicke, als Descartes von der rein algebraischen Behandlung der Gleichungen dazu fortschritt, die Größenveränderungen zu untersuchen, welche ein algebraischer Ausdruck erleidet, indem eine in ihm allgemein bezeichnete Größe eine stetige Folge von Werten durchläuft.”
Science quotes on:  |  Algebra (92)  |  Ancient (103)  |  Attitude (59)  |  Contrast (28)  |  Curve (32)  |  Denial (14)  |  René Descartes (81)  |  Difference (246)  |  Equation (93)  |  Geometry (215)  |  Investigate (65)  |  Mathematics (1149)  |  Method (230)  |  Modern (159)  |  Motion (158)  |  Preference (21)  |  Synthesis (43)  |  Treatment (100)  |  Value (240)  |  Variable (16)

It is not so long since, during one of the meetings of the Association, one of the leading English newspapers briefly described a sitting of this Section in the words, “Saturday morning was devoted to pure mathematics, and so there was nothing of any general interest:” still, such toleration is better than undisguised and ill-informed hostility.
In Report of the 67th meeting of the British Association for the Advancement of Science.
Science quotes on:  |  Association (20)  |  Better (190)  |  Brief (19)  |  Describe (56)  |  Devote (34)  |  English (34)  |  General (156)  |  Hostility (11)  |  Interest (235)  |  Meeting (20)  |  Morning (43)  |  Newspaper (32)  |  Nothing (385)  |  Pure Mathematics (63)  |  Saturday (5)  |  Section (11)  |  Toleration (6)  |  Word (299)

It may be asserted without exaggeration that the domain of mathematical knowledge is the only one of which our otherwise omniscient journalism has not yet possessed itself.
In Ueber Wert und angeblichen Unwert der Mathematik'’ Jahresbericht der Deulschen Mathematiker Vereinigung (1904), 367.
Science quotes on:  |  Domain (40)  |  Exaggeration (11)  |  Journalism (3)  |  Knowledge (1293)  |  Mathematics (1149)  |  Omniscient (5)  |  Possess (53)

Mathematics has often been characterized as the most conservative of all sciences. This is true in the sense of the immediate dependence of new upon old results. All the marvellous new advancements presuppose the old as indispensable steps in the ladder. … Inaccessibility of special fields of mathematics, except by the regular way of logically antecedent acquirements, renders the study discouraging or hateful to weak or indolent minds.
In Number and its Algebra (1896), 136.
Science quotes on:  |  Acquire (38)  |  Advance (162)  |  Antecedent (4)  |  Conservative (11)  |  Dependence (37)  |  Discourage (9)  |  Field (170)  |  Inaccessible (12)  |  Ladder (11)  |  Logic (247)  |  Mathematics (1149)  |  Mind (743)  |  Presuppose (7)  |  Regular (13)  |  Render (30)  |  Special (74)  |  Step (109)  |  Study (461)  |  Weak (43)

Mathematics is one of the oldest of the sciences; it is also one of the most active, for its strength is the vigour of perpetual youth.
In Presidential Address British Association for the Advancement of Science, Section A, (1897), Nature, 66, 378.
Science quotes on:  |  Active (25)  |  Mathematics (1149)  |  Old (147)  |  Perpetual (20)  |  Science (2043)  |  Strength (79)  |  Vigour (12)  |  Youth (75)

Modern mathematics, that most astounding of intellectual creations, has projected the mind’s eye through infinite time and the mind's hand into boundless space.
In 'What Knowledge is of Most Worth?', Presidential address to the National Education Association, Denver, Colorado (9 Jul 1895). In Educational Review (Sep 1895), 10, 108.
Science quotes on:  |  Astounding (3)  |  Creation (239)  |  Estimates of Mathematics (30)  |  Eye (218)  |  Intellect (188)  |  Mathematics (1149)  |  Mind (743)  |  Mind’s Eye (2)

Now this establishment of correspondence between two aggregates and investigation of the propositions that are carried over by the correspondence may be called the central idea of modern mathematics.
In 'Philosophy of the Pure Sciences', Lectures and Essays (1901), Vol. 1, 402.
Science quotes on:  |  Aggregate (14)  |  Call (127)  |  Carry (59)  |  Central (33)  |  Correspondence (15)  |  Establishment (34)  |  Idea (577)  |  Investigation (175)  |  Proposition (80)

One of the most conspicuous and distinctive features of mathematical thought in the nineteenth century is its critical spirit. Beginning with the calculus, it soon permeates all analysis, and toward the close of the century it overhauls and recasts the foundations of geometry and aspires to further conquests in mechanics and in the immense domains of mathematical physics. … A searching examination of the foundations of arithmetic and the calculus has brought to light the insufficiency of much of the reasoning formerly considered as conclusive.
In History of Mathematics in the Nineteenth Century', Congress of Arts and Sciences (1906), Vol. 1, 482. As quoted and cited in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 113-114.
Science quotes on:  |  19th Century (27)  |  Analysis (159)  |  Arithmetic (115)  |  Aspire (7)  |  Calculus (48)  |  Conclusive (7)  |  Conquest (19)  |  Conspicuous (7)  |  Critical (40)  |  Distinctive (14)  |  Examination (65)  |  Foundation (105)  |  Geometry (215)  |  Insufficient (8)  |  Mathematical Physics (9)  |  Mathematics (1149)  |  Mechanics (54)  |  Reason (454)  |  Spirit (152)  |  Thought (536)

Such is the character of mathematics in its profounder depths and in its higher and remoter zones that it is well nigh impossible to convey to one who has not devoted years to its exploration a just impression of the scope and magnitude of the existing body of the science. An imagination formed by other disciplines and accustomed to the interests of another field may scarcely receive suddenly an apocalyptic vision of that infinite interior world. But how amazing and how edifying were such a revelation, if it only could be made.
In Lectures on Science, Philosophy and Art (1908), 6.
Science quotes on:  |  Accustomed (16)  |  Amazing (21)  |  Apocalyptic (2)  |  Body (243)  |  Character (115)  |  Convey (16)  |  Depth (50)  |  Devote (34)  |  Discipline (53)  |  Exist (147)  |  Exploration (122)  |  Field (170)  |  Form (308)  |  High (152)  |  Imagination (268)  |  Impossible (108)  |  Impression (69)  |  Infinite (128)  |  Interest (235)  |  Interior (19)  |  Magnitude (41)  |  Mathematics (1149)  |  Profound (58)  |  Receive (59)  |  Remote (39)  |  Revelation (34)  |  Scarcely (13)  |  Science (2043)  |  Scope (23)  |  Suddenly (17)  |  Vision (94)  |  World (892)  |  Year (299)  |  Zone (5)

Surely this is the golden age of mathematics.
In 'History of Mathematics in the Nineteenth Century', Congress of Arts and Sciences (1905), Vol. 1, 493. As quoted and cited in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 108.
Science quotes on:  |  Golden Age (7)  |  Mathematics (1149)

The conception of correspondence plays a great part in modern mathematics. It is the fundamental notion in the science of order as distinguished from the science of magnitude. If the older mathematics were mostly dominated by the needs of mensuration, modern mathematics are dominated by the conception of order and arrangement. It may be that this tendency of thought or direction of reasoning goes hand in hand with the modern discovery in physics, that the changes in nature depend not only or not so much on the quantity of mass and energy as on their distribution or arrangement.
In History of European Thought in the Nineteenth Century (1903), Vol. 2, 736.
Science quotes on:  |  Arrangement (58)  |  Change (363)  |  Conception (88)  |  Correspondence (15)  |  Depend (87)  |  Direction (74)  |  Discovery (676)  |  Distinguish (61)  |  Distribution (29)  |  Dominate (19)  |  Energy (214)  |  Fundamental (158)  |  Great (524)  |  Hand In Hand (4)  |  Magnitude (41)  |  Mass (78)  |  Mathematics (1149)  |  Mensuration (2)  |  Modern (159)  |  Nature (1211)  |  Need (283)  |  Notion (57)  |  Old (147)  |  Order (239)  |  Part (220)  |  Physics (346)  |  Play (110)  |  Quantity (64)  |  Reason (454)  |  Science (2043)  |  Tendency (54)  |  Thought (536)

The Excellence of Modern Geometry is in nothing more evident, than in those full and adequate Solutions it gives to Problems; representing all possible Cases in one view, and in one general Theorem many times comprehending whole Sciences; which deduced at length into Propositions, and demonstrated after the manner of the Ancients, might well become the subjects of large Treatises: For whatsoever Theorem solves the most complicated Problem of the kind, does with a due Reduction reach all the subordinate Cases.
In 'An Instance of the Excellence of Modern Algebra, etc', Philosophical Transactions, 1694, 960.
Science quotes on:  |  Adequate (25)  |  Ancient (103)  |  Case (98)  |  Complicated (61)  |  Comprehend (39)  |  Deduce (22)  |  Demonstrate (50)  |  Due (20)  |  Evident (26)  |  Excellence (33)  |  Full (63)  |  General (156)  |  Geometry (215)  |  Give (200)  |  Kind (138)  |  Large (130)  |  Length (20)  |  Manner (57)  |  Modern (159)  |  Nothing (385)  |  Possible (155)  |  Problem (490)  |  Proposition (80)  |  Reach (119)  |  Reduction (41)  |  Represent (41)  |  Science (2043)  |  Solution (211)  |  Solve (76)  |  Subject (235)  |  Subordinate (8)  |  Theorem (88)  |  Time (594)  |  Treatise (32)  |  View (171)  |  Whatsoever (9)  |  Whole (189)

The extraordinary development of mathematics in the last century is quite unparalleled in the long history of this most ancient of sciences. Not only have those branches of mathematics which were taken over from the eighteenth century steadily grown, but entirely new ones have sprung up in almost bewildering profusion, and many of them have promptly assumed proportions of vast extent.
In The History of Mathematics in the Nineteenth Century', Congress of Arts and Sciences (1905), Vol. 1, 474. As cited and wuoted in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 110.
Science quotes on:  |  18th Century (19)  |  Ancient (103)  |  Bewildering (3)  |  Branch (102)  |  Development (276)  |  Extent (49)  |  Extraordinary (43)  |  History (368)  |  Mathematics (1149)  |  Profusion (3)  |  Proportion (70)  |  Science (2043)  |  Spring (70)  |  Vast (88)

The flights of the imagination which occur to the pure mathematician are in general so much better described in his formulas than in words, that it is not remarkable to find the subject treated by outsiders as something essentially cold and uninteresting— … the only successful attempt to invest mathematical reasoning with a halo of glory—that made in this section by Prof. Sylvester—is known to a comparative few, …
In Presidential Address British Association for the Advancement of Science (1871), Nature Vol. 4, 271,
Science quotes on:  |  Attempt (121)  |  Better (190)  |  Cold (58)  |  Comparative (13)  |  Describe (56)  |  Essentially (14)  |  Find (405)  |  Flight (63)  |  Formula (79)  |  General (156)  |  Glory (57)  |  Halo (5)  |  Imagination (268)  |  Invest (12)  |  Know (547)  |  Mathematician (364)  |  Mathematics (1149)  |  Occur (43)  |  Outsider (6)  |  Prof (2)  |  Pure (98)  |  Reason (454)  |  Remarkable (48)  |  Section (11)  |  Subject (235)  |  Successful (39)  |  James Joseph Sylvester (48)  |  Treat (34)  |  Uninteresting (6)  |  Word (299)

The golden age of mathematics—that was not the age of Euclid, it is ours. Ours is the age when no less than six international congresses have been held in the course of nine years. It is in our day that more than a dozen mathematical societies contain a growing membership of more than two thousand men representing the centers of scientific light throughout the great culture nations of the world. It is in our time that over five hundred scientific journals are each devoted in part, while more than two score others are devoted exclusively, to the publication of mathematics. It is in our time that the Jahrbuch über die Fortschritte der Mathematik, though admitting only condensed abstracts with titles, and not reporting on all the journals, has, nevertheless, grown to nearly forty huge volumes in as many years. It is in our time that as many as two thousand books and memoirs drop from the mathematical press of the world in a single year, the estimated number mounting up to fifty thousand in the last generation. Finally, to adduce yet another evidence of a similar kind, it requires not less than seven ponderous tomes of the forthcoming Encyclopaedie der Mathematischen Wissenschaften to contain, not expositions, not demonstrations, but merely compact reports and bibliographic notices sketching developments that have taken place since the beginning of the nineteenth century.
In Lectures on Science, Philosophy and Art (1908), 8.
Science quotes on:  |  19th Century (27)  |  Abstract (79)  |  Admit (44)  |  Age (174)  |  Beginning (122)  |  Bibliography (3)  |  Book (257)  |  Center (34)  |  Compact (5)  |  Condense (11)  |  Congress (12)  |  Culture (102)  |  Demonstration (81)  |  Development (276)  |  Devote (34)  |  Dozen (10)  |  Drop (39)  |  Estimate (28)  |  Euclid (52)  |  Evidence (181)  |  Exclusive (16)  |  Exposition (13)  |  Generation (137)  |  Golden Age (7)  |  Great (524)  |  Grow (98)  |  Huge (25)  |  Hundred (64)  |  International (23)  |  Journal (19)  |  Light (345)  |  Mathematics (1149)  |  Membership (5)  |  Memoir (11)  |  Mere (78)  |  Mount (10)  |  Nation (132)  |  Notice (34)  |  Number (276)  |  Part (220)  |  Ponderous (2)  |  Press (21)  |  Publication (90)  |  Report (37)  |  Represent (41)  |  Scientific (232)  |  Score (7)  |  Single (119)  |  Sketch (8)  |  Society (227)  |  Thousand (152)  |  Time (594)  |  Title (18)  |  Volume (19)  |  World (892)  |  Year (299)

The majority of mathematical truths now possessed by us presuppose the intellectual toil of many centuries. A mathematician, therefore, who wishes today to acquire a thorough understanding of modern research in this department, must think over again in quickened tempo the mathematical labors of several centuries. This constant dependence of new truths on old ones stamps mathematics as a science of uncommon exclusiveness and renders it generally impossible to lay open to uninitiated readers a speedy path to the apprehension of the higher mathematical truths. For this reason, too, the theories and results of mathematics are rarely adapted for popular presentation … This same inaccessibility of mathematics, although it secures for it a lofty and aristocratic place among the sciences, also renders it odious to those who have never learned it, and who dread the great labor involved in acquiring an understanding of the questions of modern mathematics. Neither in the languages nor in the natural sciences are the investigations and results so closely interdependent as to make it impossible to acquaint the uninitiated student with single branches or with particular results of these sciences, without causing him to go through a long course of preliminary study.
In Mathematical Essays and Recreations (1898), 32.
Science quotes on:  |  Apprehension (15)  |  Branch (102)  |  Century (130)  |  Department (47)  |  Dependence (37)  |  Dependent (22)  |  Dread (13)  |  Impossible (108)  |  Inaccessible (12)  |  Intellectual (120)  |  Investigation (175)  |  Labor (71)  |  Language (217)  |  Learn (281)  |  Lofty (12)  |  Majority (42)  |  Mathematician (364)  |  Mathematics (1149)  |  Natural Science (89)  |  New (483)  |  Odious (3)  |  Old (147)  |  Path (84)  |  Popular (29)  |  Possess (53)  |  Preliminary (5)  |  Presentation (17)  |  Presuppose (7)  |  Question (404)  |  Reader (38)  |  Research (589)  |  Result (376)  |  Science (2043)  |  Speedy (2)  |  Student (201)  |  Study (461)  |  Tempo (3)  |  Theory (690)  |  Toil (18)  |  Truth (914)  |  Uncommon (13)  |  Understand (326)  |  Uninitiated (2)

The mathematical intellectualism is henceforth a positive doctrine, but one that inverts the usual doctrines of positivism: in place of originating progress in order, dynamics in statics, its goal is to make logical order the product of intellectual progress. The science of the future is not enwombed, as Comte would have had it, as Kant had wished it, in the forms of the science already existing; the structure of these forms reveals an original dynamism whose onward sweep is prolonged by the synthetic generation of more and more complicated forms. No speculation on number considered as a category a priori enables one to account for the questions set by modern mathematics … space affirms only the possibility of applying to a multiplicity of any elements whatever, relations whose type the intellect does not undertake to determine in advance, but, on the contrary, it asserts their existence and nourishes their unlimited development.
As translated in James Byrnie Shaw, Lectures on the Philosophy of Mathematics (1918), 193. From Léon Brunschvicg, Les Étapes de La Philosophie Mathématique (1912), 567-568, “L’intellectualisme mathématique est désormais une doctrine positive, mais qui intervertira les formules habituelles du positivisme: au lieu de faire sortir le progrès de l’ordre, ou le dynamique du statique, il tend à faire de l'ordre logique le produit du progrès intellectuel. La science à venir n'est pas enfermée, comme l’aurait voulu Comte, comme le voulait déjà Kant, dans les formes de la science déjà faite; la constitution de ces formes révèle un dynamisme originel dont l’élan se prolonge par la génération synthétique de notions de plus en plus compliquées. Aucune spéculation sur le nombre, considéré comme catégorie a priori, ne permet de rendre compte des questions qui se sont posées pour la mathématique moderne … … l’espace ne fait qu'affirmer la possibilité d'appliquer sur une multiplicité d’éléments quelconques des relations dont l’intelligence ne cherche pas à déterminer d’avance le type, dont elle constate, au contraire, dont elle suscite le développement illimité.”
Science quotes on:  |  Complicated (61)  |  Auguste Comte (20)  |  Development (276)  |  Doctrine (75)  |  Dynamics (9)  |  Future (284)  |  Goal (100)  |  Intellect (188)  |  Immanuel Kant (49)  |  Logic (247)  |  Mathematics (1149)  |  Original (57)  |  Positive (43)  |  Positivism (2)  |  Progress (362)  |  Science (2043)  |  Statics (5)  |  Structure (221)

The Modern Theory of Functions—that stateliest of all the pure creations of the human intellect.
In Lectures on Science, Philosophy and Art (1908), 16.
Science quotes on:  |  Creation (239)  |  Function (128)  |  Human Intellect (10)  |  Modern (159)  |  Pure (98)  |  Stately (9)  |  Theory (690)

The nineteenth century which prides itself upon the invention of steam and evolution, might have derived a more legitimate title to fame from the discovery of pure mathematics.
In International Monthly (1901), 4, 83.
Science quotes on:  |  19th Century (27)  |  Derive (33)  |  Discovery (676)  |  Evolution (533)  |  Fame (37)  |  Invention (318)  |  Legitimate (14)  |  Pride (64)  |  Pure Mathematics (63)  |  Steam (30)  |  Title (18)

The notion, which is really the fundamental one (and I cannot too strongly emphasise the assertion), underlying and pervading the whole of modern analysis and geometry, is that of imaginary magnitude in analysis and of imaginary space in geometry.
In Presidential Address, in Collected Works, Vol. 11, 434.
Science quotes on:  |  Analysis (159)  |  Assertion (32)  |  Emphasize (12)  |  Fundamental (158)  |  Geometry (215)  |  Imaginary (16)  |  Magnitude (41)  |  Modern (159)  |  Notion (57)  |  Pervade (9)  |  Space (257)  |  Strongly (9)  |  Underlying (18)  |  Whole (189)

The science [of mathematics] has grown to such vast proportion that probably no living mathematician can claim to have achieved its mastery as a whole.
In An Introduction to Mathematics (1911), 262.
Science quotes on:  |  Achieve (63)  |  Claim (70)  |  Grow (98)  |  Live (269)  |  Mastery (27)  |  Mathematician (364)  |  Mathematics (1149)  |  Probably (47)  |  Proportion (70)  |  Science (2043)  |  Vast (88)  |  Whole (189)

The solution of the difficulties which formerly surrounded the mathematical infinite is probably the greatest achievement of which our age has to boast.
In 'The Study of Mathematics', Philosophical Essays (1910), 77.
Science quotes on:  |  Achievement (150)  |  Age (174)  |  Boast (21)  |  Difficulty (144)  |  Formerly (5)  |  Great (524)  |  Infinite (128)  |  Mathematics (1149)  |  Probably (47)  |  Solution (211)  |  Surround (29)

This is one of the greatest advantages of modern geometry over the ancient, to be able, through the consideration of positive and negative quantities, to include in a single enunciation the several cases which the same theorem may present by a change in the relative position of the different parts of a figure. Thus in our day the nine principal problems and the numerous particular cases, which form the object of eighty-three theorems in the two books De sectione determinata of Appolonius constitute only one problem which is resolved by a single equation.
In Histoire de la Géométrie, chap. 1, sect. 35.
Science quotes on:  |  Advantage (73)  |  Ancient (103)  |  Book (257)  |  Case (98)  |  Change (363)  |  Consideration (85)  |  Constitute (29)  |  Different (178)  |  Enunciation (5)  |  Equation (93)  |  Figure (68)  |  Form (308)  |  Geometry (215)  |  Great (524)  |  Include (40)  |  Modern (159)  |  Negative (33)  |  Numerous (29)  |  Object (169)  |  Part (220)  |  Particular (75)  |  Position (75)  |  Positive (43)  |  Present (174)  |  Principal (28)  |  Problem (490)  |  Quantity (64)  |  Relative (39)  |  Resolve (19)  |  Same (155)  |  Several (31)  |  Single (119)  |  Theorem (88)

Without doubt one of the most characteristic features of mathematics in the last century is the systematic and universal use of the complex variable. Most of its great theories received invaluable aid from it, and many owe their very existence to it.
In 'History of Mathematics in the Nineteenth Century', Congress of Arts and Sciences (1905), Vol. 1, 474. As quoted and cited in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 115.
Science quotes on:  |  Century (130)  |  Characteristic (94)  |  Doubt (159)  |  Existence (296)  |  Feature (43)  |  Mathematics (1149)  |  Systematic (32)  |  Theory (690)  |  Universal (100)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton



who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.