TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 24 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “I believe that this Nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to earth.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index C > Category: Clearness

Clearness Quotes (11 quotes)

As arithmetic and algebra are sciences of great clearness, certainty, and extent, which are immediately conversant about signs, upon the skilful use whereof they entirely depend, so a little attention to them may possibly help us to judge of the progress of the mind in other sciences, which, though differing in nature, design, and object, may yet agree in the general methods of proof and inquiry.
In Alciphron: or the Minute Philosopher, Dialogue 7, collected in The Works of George Berkeley D.D. (1784), Vol. 1, 621.
Science quotes on:  |  Agree (31)  |  Algebra (117)  |  Arithmetic (144)  |  Attention (196)  |  Certainty (180)  |  Conversant (6)  |  Depend (238)  |  Design (203)  |  Different (595)  |  Entire (50)  |  Extent (142)  |  General (521)  |  Great (1610)  |  Help (116)  |  Immediately (115)  |  Inquiry (88)  |  Judge (114)  |  Little (717)  |  Mathematics As A Language (20)  |  Method (531)  |  Mind (1377)  |  Nature (2017)  |  Object (438)  |  Other (2233)  |  Possibly (111)  |  Progress (492)  |  Proof (304)  |  Sign (63)  |  Skillful (17)  |  Use (771)

Confined to its true domain, mathematical reasoning is admirably adapted to perform the universal office of sound logic: to induce in order to deduce, in order to construct. … It contents itself to furnish, in the most favorable domain, a model of clearness, of precision, and consistency, the close contemplation of which is alone able to prepare the mind to render other conceptions also as perfect as their nature permits. Its general reaction, more negative than positive, must consist, above all, in inspiring us everywhere with an invincible aversion for vagueness, inconsistency, and obscurity, which may always be really avoided in any reasoning whatsoever, if we make sufficient effort.
In Synthèse Subjective (1856), 98. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-Book (1914), 202-203. From the original French, “Bornée à son vrai domaine, la raison mathématique y peut admirablement remplir l’office universel de la saine logique: induire pour déduire, afin de construire. … Elle se contente de former, dans le domaine le plus favorable, un type de clarté, de précision, et de consistance, dont la contemplation familière peut seule disposer l’esprit à rendre les autres conceptions aussi parfaites que le comporte leur nature. Sa réaction générale, plus négative que positive, doit surtout consister à nous inspirer partout une invincible répugnance pour le vague, l’incohérence, et l’obscurité, que nous pouvons réellement éviter envers des pensées quelconques, si nous y faisons assez d’efforts.”
Science quotes on:  |  Adapt (70)  |  Alone (324)  |  Aversion (9)  |  Avoid (123)  |  Close (77)  |  Conception (160)  |  Confine (26)  |  Consist (223)  |  Consistency (31)  |  Consistent (50)  |  Construct (129)  |  Contemplation (75)  |  Content (75)  |  Deduce (27)  |  Domain (72)  |  Effort (243)  |  Everywhere (98)  |  Favorable (24)  |  Furnish (97)  |  General (521)  |  Inconsistent (9)  |  Induce (24)  |  Inspire (58)  |  Invincible (6)  |  Logic (311)  |  Mathematics (1395)  |  Mathematics And Logic (27)  |  Mind (1377)  |  Model (106)  |  More (2558)  |  Most (1728)  |  Must (1525)  |  Nature (2017)  |  Negative (66)  |  Obscurity (28)  |  Office (71)  |  Order (638)  |  Other (2233)  |  Perfect (223)  |  Perform (123)  |  Permit (61)  |  Positive (98)  |  Precision (72)  |  Prepare (44)  |  Reaction (106)  |  Reasoning (212)  |  Render (96)  |  Sound (187)  |  Sufficient (133)  |  True (239)  |  Universal (198)  |  Vagueness (15)  |  Whatsoever (41)

Euclidean mathematics assumes the completeness and invariability of mathematical forms; these forms it describes with appropriate accuracy and enumerates their inherent and related properties with perfect clearness, order, and completeness, that is, Euclidean mathematics operates on forms after the manner that anatomy operates on the dead body and its members. On the other hand, the mathematics of variable magnitudes—function theory or analysis—considers mathematical forms in their genesis. By writing the equation of the parabola, we express its law of generation, the law according to which the variable point moves. The path, produced before the eyes of the student by a point moving in accordance to this law, is the parabola.
If, then, Euclidean mathematics treats space and number forms after the manner in which anatomy treats the dead body, modern mathematics deals, as it were, with the living body, with growing and changing forms, and thus furnishes an insight, not only into nature as she is and appears, but also into nature as she generates and creates,—reveals her transition steps and in so doing creates a mind for and understanding of the laws of becoming. Thus modern mathematics bears the same relation to Euclidean mathematics that physiology or biology … bears to anatomy.
In Die Mathematik die Fackelträgerin einer neuen Zeit (1889), 38. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 112-113.
Science quotes on:  |  Accord (36)  |  Accordance (10)  |  According (236)  |  Accuracy (81)  |  Analysis (244)  |  Anatomy (75)  |  Appear (122)  |  Appropriate (61)  |  Bear (162)  |  Become (821)  |  Becoming (96)  |  Biology (232)  |  Body (557)  |  Change (639)  |  Completeness (19)  |  Consider (428)  |  Create (245)  |  Dead (65)  |  Deal (192)  |  Describe (132)  |  Doing (277)  |  Enumerate (3)  |  Equation (138)  |  Euclid (60)  |  Express (192)  |  Eye (440)  |  Form (976)  |  Function (235)  |  Furnish (97)  |  Generate (16)  |  Generation (256)  |   Genesis (26)  |  Grow (247)  |  Growing (99)  |  Inherent (43)  |  Insight (107)  |  Invariability (6)  |  Law (913)  |  Living (492)  |  Living Body (3)  |  Magnitude (88)  |  Manner (62)  |  Mathematics (1395)  |  Member (42)  |  Mind (1377)  |  Modern (402)  |  Modern Mathematics (50)  |  Move (223)  |  Nature (2017)  |  Number (710)  |  On The Other Hand (40)  |  Operate (19)  |  Order (638)  |  Other (2233)  |  Parabola (2)  |  Path (159)  |  Perfect (223)  |  Physiology (101)  |  Point (584)  |  Produce (117)  |  Produced (187)  |  Property (177)  |  Relate (26)  |  Relation (166)  |  Reveal (152)  |  Same (166)  |  Space (523)  |  Step (234)  |  Student (317)  |  Theory (1015)  |  Transition (28)  |  Treat (38)  |  Understand (648)  |  Understanding (527)  |  Variable (37)  |  Write (250)  |  Writing (192)

For just as musical instruments are brought to perfection of clearness in the sound of their strings by means of bronze plates or horn sounding boards, so the ancients devised methods of increasing the power of the voice in theaters through the application of the science of harmony.
Vitruvius
In Vitruvius Pollio and Morris Hicky Morgan (trans.), 'Book V: Chapter III', Vitruvius, the Ten Books on Architecture (1914), 139. From the original Latin, “Ergo veteres Architecti, naturae vestigia persecuti, indagationibus vocis scandentes theatrorum perfecerunt gradationes: & quaesiuerunt per canonicam mathematicorum,& musicam rationem, ut quaecunq; vox effet in scena, clarior & suauior ad spectatorum perueniret aures. Uti enim organa in aeneis laminis, aut corneis, diesi ad chordarum sonituum claritatem perficiuntur: sic theatrorum, per harmonicen ad augendam vocem, ratiocinationes ab antiquis sunt constitutae.” In De Architectura libri decem (1552), 175.
Science quotes on:  |  Acoustics (4)  |  Ancient (198)  |  Application (257)  |  Board (13)  |  Bronze (5)  |  Devise (16)  |  Harmonic (4)  |  Harmony (105)  |  Horn (18)  |  Increase (225)  |  Instrument (158)  |  Mean (810)  |  Means (587)  |  Method (531)  |  Music (133)  |  Perfection (131)  |  Plate (7)  |  Power (771)  |  Science And Art (195)  |  Sound (187)  |  String (22)  |  Through (846)  |  Voice (54)

It is now necessary to indicate more definitely the reason why mathematics not only carries conviction in itself, but also transmits conviction to the objects to which it is applied. The reason is found, first of all, in the perfect precision with which the elementary mathematical concepts are determined; in this respect each science must look to its own salvation .... But this is not all. As soon as human thought attempts long chains of conclusions, or difficult matters generally, there arises not only the danger of error but also the suspicion of error, because since all details cannot be surveyed with clearness at the same instant one must in the end be satisfied with a belief that nothing has been overlooked from the beginning. Every one knows how much this is the case even in arithmetic, the most elementary use of mathematics. No one would imagine that the higher parts of mathematics fare better in this respect; on the contrary, in more complicated conclusions the uncertainty and suspicion of hidden errors increases in rapid progression. How does mathematics manage to rid itself of this inconvenience which attaches to it in the highest degree? By making proofs more rigorous? By giving new rules according to which the old rules shall be applied? Not in the least. A very great uncertainty continues to attach to the result of each single computation. But there are checks. In the realm of mathematics each point may be reached by a hundred different ways; and if each of a hundred ways leads to the same point, one may be sure that the right point has been reached. A calculation without a check is as good as none. Just so it is with every isolated proof in any speculative science whatever; the proof may be ever so ingenious, and ever so perfectly true and correct, it will still fail to convince permanently. He will therefore be much deceived, who, in metaphysics, or in psychology which depends on metaphysics, hopes to see his greatest care in the precise determination of the concepts and in the logical conclusions rewarded by conviction, much less by success in transmitting conviction to others. Not only must the conclusions support each other, without coercion or suspicion of subreption, but in all matters originating in experience, or judging concerning experience, the results of speculation must be verified by experience, not only superficially, but in countless special cases.
In Werke [Kehrbach] (1890), Bd. 5, 105. As quoted, cited and translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-Book (1914), 19.
Science quotes on:  |  Accord (36)  |  According (236)  |  Applied (176)  |  Apply (170)  |  Arise (162)  |  Arithmetic (144)  |  Attach (57)  |  Attempt (266)  |  Begin (275)  |  Beginning (312)  |  Belief (615)  |  Better (493)  |  Calculation (134)  |  Care (203)  |  Carry (130)  |  Case (102)  |  Chain (51)  |  Check (26)  |  Coercion (4)  |  Complicated (117)  |  Computation (28)  |  Concept (242)  |  Concern (239)  |  Conclusion (266)  |  Continue (179)  |  Contrary (143)  |  Conviction (100)  |  Convince (43)  |  Correct (95)  |  Countless (39)  |  Danger (127)  |  Deceive (26)  |  Definitely (5)  |  Degree (277)  |  Depend (238)  |  Detail (150)  |  Determination (80)  |  Determine (152)  |  Different (595)  |  Difficult (263)  |  Elementary (98)  |  End (603)  |  Error (339)  |  Experience (494)  |  Fail (191)  |  Fare (5)  |  Find (1014)  |  First (1302)  |  Generally (15)  |  Give (208)  |  Good (906)  |  Great (1610)  |  Greatest (330)  |  Hide (70)  |  High (370)  |  Hope (321)  |  Human (1512)  |  Human Thought (7)  |  Hundred (240)  |  Imagine (176)  |  Inconvenience (3)  |  Increase (225)  |  Indicate (62)  |  Ingenious (55)  |  Instant (46)  |  Isolate (24)  |  Judge (114)  |  Know (1538)  |  Lead (391)  |  Least (75)  |  Less (105)  |  Logical (57)  |  Long (778)  |  Look (584)  |  Making (300)  |  Manage (26)  |  Mathematics (1395)  |  Matter (821)  |  Metaphysic (7)  |  Metaphysics (53)  |  More (2558)  |  Most (1728)  |  Must (1525)  |  Nature Of Mathematics (80)  |  Necessary (370)  |  New (1273)  |  Nothing (1000)  |  Object (438)  |  Old (499)  |  Originate (39)  |  Other (2233)  |  Overlook (33)  |  Part (235)  |  Perfect (223)  |  Perfectly (10)  |  Permanent (67)  |  Point (584)  |  Precise (71)  |  Precision (72)  |  Progression (23)  |  Proof (304)  |  Psychology (166)  |  Rapid (37)  |  Reach (286)  |  Realm (87)  |  Reason (766)  |  Respect (212)  |  Result (700)  |  Reward (72)  |  Rid (14)  |  Right (473)  |  Rigorous (50)  |  Rule (307)  |  Salvation (13)  |  Same (166)  |  Satisfied (23)  |  See (1094)  |  Single (365)  |  Soon (187)  |  Special (188)  |  Special Case (9)  |  Speculation (137)  |  Speculative (12)  |  Still (614)  |  Success (327)  |  Superficial (12)  |  Support (151)  |  Survey (36)  |  Suspicion (36)  |  Thought (995)  |  Transmit (12)  |  True (239)  |  Uncertainty (58)  |  Use (771)  |  Verify (24)  |  Way (1214)  |  Whatever (234)  |  Why (491)  |  Will (2350)

It was his [Leibnitz’s] love of method and order, and the conviction that such order and harmony existed in the real world, and that our success in understanding it depended upon the degree and order which we could attain in our own thoughts, that originally was probably nothing more than a habit which by degrees grew into a formal rule. This habit was acquired by early occupation with legal and mathematical questions. We have seen how the theory of combinations and arrangements of elements had a special interest for him. We also saw how mathematical calculations served him as a type and model of clear and orderly reasoning, and how he tried to introduce method and system into logical discussions, by reducing to a small number of terms the multitude of compound notions he had to deal with. This tendency increased in strength, and even in those early years he elaborated the idea of a general arithmetic, with a universal language of symbols, or a characteristic which would be applicable to all reasoning processes, and reduce philosophical investigations to that simplicity and certainty which the use of algebraic symbols had introduced into mathematics.
A mental attitude such as this is always highly favorable for mathematical as well as for philosophical investigations. Wherever progress depends upon precision and clearness of thought, and wherever such can be gained by reducing a variety of investigations to a general method, by bringing a multitude of notions under a common term or symbol, it proves inestimable. It necessarily imports the special qualities of number—viz., their continuity, infinity and infinite divisibility—like mathematical quantities—and destroys the notion that irreconcilable contrasts exist in nature, or gaps which cannot be bridged over. Thus, in his letter to Arnaud, Leibnitz expresses it as his opinion that geometry, or the philosophy of space, forms a step to the philosophy of motion—i.e., of corporeal things—and the philosophy of motion a step to the philosophy of mind.
In Leibnitz (1884), 44-45. [The first sentence is reworded to better introduce the quotation. —Webmaster]
Science quotes on:  |  Acquire (46)  |  Acquired (77)  |  Algebraic (5)  |  Applicable (31)  |  Arithmetic (144)  |  Arrangement (93)  |  Attain (126)  |  Attitude (84)  |  Bridge (49)  |  Bring (95)  |  Calculation (134)  |  Certainty (180)  |  Characteristic (154)  |  Clear (111)  |  Combination (150)  |  Common (447)  |  Compound (117)  |  Continuity (39)  |  Contrast (45)  |  Conviction (100)  |  Corporeal (5)  |  Deal (192)  |  Degree (277)  |  Depend (238)  |  Destroy (189)  |  Discussion (78)  |  Early (196)  |  Elaborate (31)  |  Elaborated (7)  |  Element (322)  |  Exist (458)  |  Express (192)  |  Favorable (24)  |  Form (976)  |  Formal (37)  |  Gain (146)  |  Gap (36)  |  General (521)  |  Geometry (271)  |  Grow (247)  |  Habit (174)  |  Harmony (105)  |  Highly (16)  |  Idea (881)  |  Import (5)  |  Increase (225)  |  Inestimable (4)  |  Infinite (243)  |  Infinity (96)  |  Interest (416)  |  Introduce (63)  |  Investigation (250)  |  Language (308)  |  Lecture (111)  |  Legal (9)  |  Gottfried Wilhelm Leibniz (51)  |  Letter (117)  |  Logical (57)  |  Love (328)  |  Mathematicians and Anecdotes (141)  |  Mathematics (1395)  |  Mental (179)  |  Method (531)  |  Mind (1377)  |  Model (106)  |  More (2558)  |  Motion (320)  |  Multitude (50)  |  Nature (2017)  |  Necessarily (137)  |  Nothing (1000)  |  Notion (120)  |  Number (710)  |  Occupation (51)  |  Opinion (291)  |  Order (638)  |  Orderly (38)  |  Original (61)  |  Philosophical (24)  |  Philosophy (409)  |  Precision (72)  |  Probable (24)  |  Process (439)  |  Progress (492)  |  Prove (261)  |  Purpose (336)  |  Quality (139)  |  Quantity (136)  |  Question (649)  |  Quotation (19)  |  Real World (15)  |  Reason (766)  |  Reasoning (212)  |  Reduce (100)  |  Rule (307)  |  Saw (160)  |  See (1094)  |  Sentence (35)  |  Serve (64)  |  Simplicity (175)  |  Small (489)  |  Space (523)  |  Special (188)  |  Special Interest (2)  |  Step (234)  |  Strength (139)  |  Success (327)  |  Symbol (100)  |  System (545)  |  Tendency (110)  |  Term (357)  |  Terms (184)  |  Theory (1015)  |  Thing (1914)  |  Thought (995)  |  Try (296)  |  Type (171)  |  Understand (648)  |  Understanding (527)  |  Universal (198)  |  Use (771)  |  Variety (138)  |  Wherever (51)  |  World (1850)  |  Year (963)

Its [mathematical analysis] chief attribute is clearness; it has no means for expressing confused ideas. It compares the most diverse phenomena and discovers the secret analogies which unite them. If matter escapes us, as that of air and light because of its extreme tenuity, if bodies are placed far from us in the immensity of space, if man wishes to know the aspect of the heavens at successive periods separated by many centuries, if gravity and heat act in the interior of the solid earth at depths which will forever be inaccessible, mathematical analysis is still able to trace the laws of these phenomena. It renders them present and measurable, and appears to be the faculty of the human mind destined to supplement the brevity of life and the imperfection of the senses, and what is even more remarkable, it follows the same course in the study of all phenomena; it explains them in the same language, as if in witness to the unity and simplicity of the plan of the universe, and to make more manifest the unchangeable order which presides over all natural causes.
From Théorie Analytique de la Chaleur (1822), Discours Préliminaire, xiv, (Theory of Heat, Introduction), as translated by Alexander Freeman in The Analytical Theory of Heat (1878), 7.
Science quotes on:  |  Act (278)  |  Air (366)  |  Analogy (76)  |  Analysis (244)  |  Appear (122)  |  Aspect (129)  |  Attribute (65)  |  Body (557)  |  Brevity (8)  |  Cause (561)  |  Century (319)  |  Chief (99)  |  Compare (76)  |  Confused (13)  |  Course (413)  |  Depth (97)  |  Destined (42)  |  Discover (571)  |  Diverse (20)  |  Earth (1076)  |  Escape (85)  |  Explain (334)  |  Express (192)  |  Extreme (78)  |  Faculty (76)  |  Far (158)  |  Follow (389)  |  Forever (111)  |  Gravity (140)  |  Heat (180)  |  Heaven (266)  |  Heavens (125)  |  Human (1512)  |  Human Mind (133)  |  Idea (881)  |  Immensity (30)  |  Imperfection (32)  |  Inaccessible (18)  |  Interior (35)  |  Know (1538)  |  Language (308)  |  Law (913)  |  Life (1870)  |  Light (635)  |  Man (2252)  |  Manifest (21)  |  Mathematical Analysis (23)  |  Matter (821)  |  Mean (810)  |  Means (587)  |  Measurable (3)  |  Mind (1377)  |  More (2558)  |  Most (1728)  |  Natural (810)  |  Nature Of Mathematics (80)  |  Order (638)  |  Period (200)  |  Phenomenon (334)  |  Place (192)  |  Plan (122)  |  Present (630)  |  Preside (3)  |  Remarkable (50)  |  Render (96)  |  Same (166)  |  Secret (216)  |  Sense (785)  |  Separate (151)  |  Simplicity (175)  |  Solid (119)  |  Space (523)  |  Still (614)  |  Study (701)  |  Successive (73)  |  Supplement (7)  |  Tenuity (2)  |  Trace (109)  |  Unchangeable (11)  |  Unite (43)  |  Unity (81)  |  Universe (900)  |  Will (2350)  |  Wish (216)  |  Witness (57)

Mathematics, the priestess of definiteness and clearness.
In Werke [Kehrbach] (1890), Bd. 1, 171. As quoted, cited and translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-Book (1914), 14.
Science quotes on:  |  Definite (114)  |  Mathematics (1395)  |  Nature Of Mathematics (80)  |  Priestess (2)

The anxious precision of modern mathematics is necessary for accuracy, … it is necessary for research. It makes for clearness of thought and for fertility in trying new combinations of ideas. When the initial statements are vague and slipshod, at every subsequent stage of thought, common sense has to step in to limit applications and to explain meanings. Now in creative thought common sense is a bad master. Its sole criterion for judgment is that the new ideas shall look like the old ones, in other words it can only act by suppressing originality.
In Introduction to Mathematics (1911), 157.
Science quotes on:  |  Accuracy (81)  |  Act (278)  |  Anxious (4)  |  Application (257)  |  Bad (185)  |  Combination (150)  |  Common (447)  |  Common Sense (136)  |  Creative (144)  |  Criterion (28)  |  Explain (334)  |  Fertility (23)  |  Idea (881)  |  In Other Words (9)  |  Initial (17)  |  Judgment (140)  |  Limit (294)  |  Look (584)  |  Master (182)  |  Mathematics (1395)  |  Meaning (244)  |  Meanings (5)  |  Modern (402)  |  Modern Mathematics (50)  |  Necessary (370)  |  New (1273)  |  New Ideas (17)  |  Old (499)  |  Originality (21)  |  Other (2233)  |  Precision (72)  |  Research (753)  |  Sense (785)  |  Sole (50)  |  Stage (152)  |  Statement (148)  |  Step (234)  |  Study And Research In Mathematics (61)  |  Subsequent (34)  |  Suppress (6)  |  Thought (995)  |  Try (296)  |  Trying (144)  |  Vague (50)  |  Word (650)

The mathematical talent of Cayley was characterized by clearness and extreme elegance of analytical form; it was re-enforced by an incomparable capacity for work which has caused the distinguished scholar to be compared with Cauchy.
In Comptes Rendus (1895), 120, 234.
Science quotes on:  |  Analysis (244)  |  Capacity (105)  |  Baron Augustin-Louis Cauchy (11)  |  Cause (561)  |  Arthur Cayley (17)  |  Characterize (22)  |  Compare (76)  |  Distinguish (168)  |  Distinguished (84)  |  Elegance (40)  |  Extreme (78)  |  Form (976)  |  Incomparable (14)  |  Mathematicians and Anecdotes (141)  |  Mathematics (1395)  |  Scholar (52)  |  Talent (99)  |  Work (1402)

This science, Geometry, is one of indispensable use and constant reference, for every student of the laws of nature; for the relations of space and number are the alphabet in which those laws are written. But besides the interest and importance of this kind which geometry possesses, it has a great and peculiar value for all who wish to understand the foundations of human knowledge, and the methods by which it is acquired. For the student of geometry acquires, with a degree of insight and clearness which the unmathematical reader can but feebly imagine, a conviction that there are necessary truths, many of them of a very complex and striking character; and that a few of the most simple and self-evident truths which it is possible for the mind of man to apprehend, may, by systematic deduction, lead to the most remote and unexpected results.
In The Philosophy of the Inductive Sciences Part 1, Bk. 2, chap. 4, sect. 8 (1868).
Science quotes on:  |  Acquire (46)  |  Acquired (77)  |  Alphabet (14)  |  Apprehend (5)  |  Character (259)  |  Complex (202)  |  Constant (148)  |  Conviction (100)  |  Deduction (90)  |  Degree (277)  |  Evident (92)  |  Feeble (28)  |  Foundation (177)  |  Geometry (271)  |  Great (1610)  |  Human (1512)  |  Imagine (176)  |  Importance (299)  |  Indispensable (31)  |  Insight (107)  |  Interest (416)  |  Kind (564)  |  Knowledge (1647)  |  Law (913)  |  Lead (391)  |  Man (2252)  |  Method (531)  |  Mind (1377)  |  Mind Of Man (7)  |  Most (1728)  |  Nature (2017)  |  Necessary (370)  |  Number (710)  |  Peculiar (115)  |  Possess (157)  |  Possible (560)  |  Reader (42)  |  Reference (33)  |  Relation (166)  |  Remote (86)  |  Result (700)  |  Self (268)  |  Self-Evident (22)  |  Simple (426)  |  Space (523)  |  Strike (72)  |  Striking (48)  |  Student (317)  |  Systematic (58)  |  Truth (1109)  |  Understand (648)  |  Unexpected (55)  |  Use (771)  |  Value (393)  |  Value Of Mathematics (60)  |  Wish (216)  |  Write (250)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.