TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 24 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index M > Category: Mathematical Analysis

Mathematical Analysis Quotes (23 quotes)

Il ne peut y avoir de langage plus universel et plus simple, plus exempt d’erreurs et d’obscurités, c'est-à-dire plus digne d'exprimer les rapports invariables des êtres naturels.
There cannot be a language more universal and more simple, more free from errors and obscurities, … more worthy to express the invariable relations of all natural things. [About mathematical analysis.]
From Théorie Analytique de la Chaleur (1822), xiv, translated by Alexander Freeman in The Analytical Theory of Heat (1878), 7.
Science quotes on:  |  Analysis (244)  |  Dire (6)  |  Error (339)  |  Express (192)  |  Free (239)  |  Invariable (6)  |  Language (308)  |  More (2558)  |  Natural (810)  |  Nature (2017)  |  Obscurity (28)  |  Plus (43)  |  Relation (166)  |  Simple (426)  |  Thing (1914)  |  Universal (198)  |  Worthy (35)

L’analyse mathématique … dans l’étude de tous les phénomènes; elle les interprète par le même langage, comme pour attester l’unité et la simplicité du plan de l’univers, et rendre encore plus manifeste cet ordre immuable qui préside à toutes les causes naturelles.
Mathematical analysis … in the study of all phenomena, interprets them by the same language, as if to attest the unity and simplicity of the plan of the universe, and to make still more evident that unchangeable order which presides over all natural causes.
From Théorie Analytique de la Chaleur (1822), xv, translated by Alexander Freeman in The Analytical Theory of Heat (1878), 8.
Science quotes on:  |  Analysis (244)  |  Attest (4)  |  Cause (561)  |  Evident (92)  |  Interpret (25)  |  Language (308)  |  More (2558)  |  Natural (810)  |  Order (638)  |  Phenomenon (334)  |  Plan (122)  |  Plus (43)  |  Preside (3)  |  Same (166)  |  Simplicity (175)  |  Still (614)  |  Study (701)  |  Unchangeable (11)  |  Unity (81)  |  Universe (900)

~~[Paraphrase]~~ Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.
This is not a verbatim quote from H.G. Wells, but is a much-shortened paraphrase from his book Mankind in the Making (1903). The paraphrase was expressed by statistician Samuel S. Wilks, in a 1951 address. See the Samuel S. Wilks Quotations page on this site for the full citation. See this H.G. Wells quote page for the original full quote, beginning: “The new mathematics is a sort of supplement to language…” Note that, in fact, Wells referred only to “mathematical analysis” such as “averages and maxima and minima” — and did not specify (more complex) “statistics” at all!
Science quotes on:  |  Ability (162)  |  Citizenship (9)  |  Efficient (34)  |  Necessary (370)  |  Paraphrase (4)  |  Read (308)  |  Statistics (170)  |  Think (1122)  |  Write (250)

Art is an expression of the world order and is, therefore, orderly, organic, subject to mathematical law, and susceptible to mathematical analysis.
In 'The Theosophic View of the Art of Architecture', The Beautiful Necessity, Seven Essays on Theosophy and Architecture (2nd ed., 1922), Preface to the Second Edition, 11.
Science quotes on:  |  Analysis (244)  |  Art (680)  |  Expression (181)  |  Law (913)  |  Mathematics (1395)  |  Order (638)  |  Orderly (38)  |  Organic (161)  |  Subject (543)  |  Susceptible (8)  |  World (1850)

I presume that few who have paid any attention to the history of the Mathematical Analysis, will doubt that it has been developed in a certain order, or that that order has been, to a great extent, necessary—being determined, either by steps of logical deduction, or by the successive introduction of new ideas and conceptions, when the time for their evolution had arrived. And these are the causes that operate in perfect harmony. Each new scientific conception gives occasion to new applications of deductive reasoning; but those applications may be only possible through the methods and the processes which belong to an earlier stage.
Explaining his choice for the exposition in historical order of the topics in A Treatise on Differential Equations (1859), Preface, v-vi.
Science quotes on:  |  Analysis (244)  |  Application (257)  |  Attention (196)  |  Being (1276)  |  Belong (168)  |  Cause (561)  |  Certain (557)  |  Conception (160)  |  Deduction (90)  |  Develop (278)  |  Development (441)  |  Doubt (314)  |  Earlier (9)  |  Evolution (635)  |  Extent (142)  |  Great (1610)  |  Harmony (105)  |  History (716)  |  Idea (881)  |  Introduction (37)  |  Logic (311)  |  Mathematics (1395)  |  Method (531)  |  Necessary (370)  |  Necessity (197)  |  New (1273)  |  Occasion (87)  |  Order (638)  |  Perfect (223)  |  Possible (560)  |  Process (439)  |  Reasoning (212)  |  Scientific (955)  |  Stage (152)  |  Step (234)  |  Successive (73)  |  Through (846)  |  Time (1911)  |  Will (2350)

I remember my first look at the great treatise of Maxwell’s when I was a young man… I saw that it was great, greater and greatest, with prodigious possibilities in its power… I was determined to master the book and set to work. I was very ignorant. I had no knowledge of mathematical analysis (having learned only school algebra and trigonometry which I had largely forgotten) and thus my work was laid out for me. It took me several years before I could understand as much as I possibly could. Then I set Maxwell aside and followed my own course. And I progressed much more quickly… It will be understood that I preach the gospel according to my interpretation of Maxwell.
From translations of a letter (24 Feb 1918), cited in Paul J. Nahin, Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age (2002), 24. Nahin footnotes that the words are not verbatim, but are the result of two translations. Heaviside's original letter in English was quoted, translated in to French by J. Bethenode, for the obituary he wrote, "Oliver Heaviside", in Annales des Posies Telegraphs (1925), 14, 521-538. The quote was retranslated back to English in Nadin's book. Bethenode footnoted that he made the original translation "as literally as possible in order not to change the meaning." Nadin assures that the retranslation was done likewise. Heaviside studyied Maxwell's two-volume Treatise on Electricity and Magnetism.
Science quotes on:  |  According (236)  |  Algebra (117)  |  Analysis (244)  |  Book (413)  |  Course (413)  |  Determination (80)  |  First (1302)  |  Follow (389)  |  Forgotten (53)  |  Gospel (8)  |  Great (1610)  |  Greater (288)  |  Greatest (330)  |  Ignorance (254)  |  Ignorant (91)  |  Interpretation (89)  |  Knowledge (1647)  |  Learn (672)  |  Learned (235)  |  Learning (291)  |  Look (584)  |  Man (2252)  |  Master (182)  |  Maxwell (42)  |  James Clerk Maxwell (91)  |  More (2558)  |  Possibility (172)  |  Possibly (111)  |  Power (771)  |  Preach (11)  |  Prodigious (20)  |  Progress (492)  |  Remember (189)  |  Saw (160)  |  School (227)  |  Set (400)  |  Treatise (46)  |  Trigonometry (7)  |  Understand (648)  |  Understood (155)  |  Will (2350)  |  Work (1402)  |  Year (963)  |  Young (253)

If, unwarned by my example, any man shall undertake and shall succeed in really constructing an engine embodying in itself the whole of the executive department of mathematical analysis upon different principles or by simpler mechanical means, I have no fear of leaving my reputation in his charge, for he alone will be fully able to appreciate the nature of my efforts and the value of their results.
In Passages from the Life of a Philosopher (1864), 450.
Science quotes on:  |  Alone (324)  |  Analysis (244)  |  Appreciate (67)  |  Charge (63)  |  Construct (129)  |  Department (93)  |  Different (595)  |  Effort (243)  |  Embody (18)  |  Engine (99)  |  Example (98)  |  Executive (3)  |  Fear (212)  |  Man (2252)  |  Mathematics (1395)  |  Mean (810)  |  Means (587)  |  Mechanical (145)  |  Nature (2017)  |  Principle (530)  |  Reputation (33)  |  Result (700)  |  Simpler (8)  |  Succeed (114)  |  Undertake (35)  |  Value (393)  |  Warning (18)  |  Whole (756)  |  Will (2350)

In mathematical analysis we call x the undetermined part of line a: the rest we don’t call y, as we do in common life, but a-x. Hence mathematical language has great advantages over the common language.
Lichtenberg: A Doctrine of Scattered Occasions: Reconstructed From: Reconstructed From His Aphorisms and Reflections (1959), 158.
Science quotes on:  |  Advantage (144)  |  Analysis (244)  |  Call (781)  |  Common (447)  |  Do (1905)  |  Great (1610)  |  Language (308)  |  Life (1870)  |  Line (100)  |  Mathematics (1395)  |  Rest (287)  |  Undetermined (3)  |  Y (2)

Its [mathematical analysis] chief attribute is clearness; it has no means for expressing confused ideas. It compares the most diverse phenomena and discovers the secret analogies which unite them. If matter escapes us, as that of air and light because of its extreme tenuity, if bodies are placed far from us in the immensity of space, if man wishes to know the aspect of the heavens at successive periods separated by many centuries, if gravity and heat act in the interior of the solid earth at depths which will forever be inaccessible, mathematical analysis is still able to trace the laws of these phenomena. It renders them present and measurable, and appears to be the faculty of the human mind destined to supplement the brevity of life and the imperfection of the senses, and what is even more remarkable, it follows the same course in the study of all phenomena; it explains them in the same language, as if in witness to the unity and simplicity of the plan of the universe, and to make more manifest the unchangeable order which presides over all natural causes.
From Théorie Analytique de la Chaleur (1822), Discours Préliminaire, xiv, (Theory of Heat, Introduction), as translated by Alexander Freeman in The Analytical Theory of Heat (1878), 7.
Science quotes on:  |  Act (278)  |  Air (366)  |  Analogy (76)  |  Analysis (244)  |  Appear (122)  |  Aspect (129)  |  Attribute (65)  |  Body (557)  |  Brevity (8)  |  Cause (561)  |  Century (319)  |  Chief (99)  |  Clearness (11)  |  Compare (76)  |  Confused (13)  |  Course (413)  |  Depth (97)  |  Destined (42)  |  Discover (571)  |  Diverse (20)  |  Earth (1076)  |  Escape (85)  |  Explain (334)  |  Express (192)  |  Extreme (78)  |  Faculty (76)  |  Far (158)  |  Follow (389)  |  Forever (111)  |  Gravity (140)  |  Heat (180)  |  Heaven (266)  |  Heavens (125)  |  Human (1512)  |  Human Mind (133)  |  Idea (881)  |  Immensity (30)  |  Imperfection (32)  |  Inaccessible (18)  |  Interior (35)  |  Know (1538)  |  Language (308)  |  Law (913)  |  Life (1870)  |  Light (635)  |  Man (2252)  |  Manifest (21)  |  Matter (821)  |  Mean (810)  |  Means (587)  |  Measurable (3)  |  Mind (1377)  |  More (2558)  |  Most (1728)  |  Natural (810)  |  Nature Of Mathematics (80)  |  Order (638)  |  Period (200)  |  Phenomenon (334)  |  Place (192)  |  Plan (122)  |  Present (630)  |  Preside (3)  |  Remarkable (50)  |  Render (96)  |  Same (166)  |  Secret (216)  |  Sense (785)  |  Separate (151)  |  Simplicity (175)  |  Solid (119)  |  Space (523)  |  Still (614)  |  Study (701)  |  Successive (73)  |  Supplement (7)  |  Tenuity (2)  |  Trace (109)  |  Unchangeable (11)  |  Unite (43)  |  Unity (81)  |  Universe (900)  |  Will (2350)  |  Wish (216)  |  Witness (57)

Like Molière’s M. Jourdain, who spoke prose all his life without knowing it, mathematicians have been reasoning for at least two millennia without being aware of all the principles underlying what they were doing. The real nature of the tools of their craft has become evident only within recent times A renaissance of logical studies in modern times begins with the publication in 1847 of George Boole’s The Mathematical Analysis of Logic.
Co-authored with James R. Newman in Gödel's Proof (1986, 2005), 30.
Science quotes on:  |  Analysis (244)  |  Aware (36)  |  Become (821)  |  Begin (275)  |  Being (1276)  |  George Boole (12)  |  Craft (11)  |  Doing (277)  |  Evident (92)  |  Knowing (137)  |  Life (1870)  |  Logic (311)  |  Mathematician (407)  |  Mathematics (1395)  |  Millennia (4)  |  Modern (402)  |  Nature (2017)  |  Principle (530)  |  Prose (11)  |  Publication (102)  |  Real (159)  |  Reasoning (212)  |  Recent (78)  |  Renaissance (16)  |  Study (701)  |  Time (1911)  |  Tool (129)  |  Two (936)  |  Underlying (33)

Mathematical analysis is as extensive as nature itself; it defines all perceptible relations, measures times, spaces, forces, temperatures; this difficult science is formed slowly, but it preserves every principle which it has once acquired; it grows and strengthens itself incessantly in the midst of the many variations and errors of the human mind.
From Théorie Analytique de la Chaleur (1822), Discours Préliminaire, xiv, (Theory of Heat, Introduction), as translated by Alexander Freeman in The Analytical Theory of Heat (1878), 7. From the original French, “L’analyse mathématique est aussi étendue que la nature elle-même; elle définit tous les rapports sensibles, mesure les temps y les espaces, les forces, les températures; cette science difficile se forme avec lenteur, mais elle conserve tous les principes quelle a une fois acquis; elle s’accroît et s’affermit sans cesse au milieu de tant de variations et d’erreurs de l’esprit humain.”
Science quotes on:  |  Acquired (77)  |  Analysis (244)  |  Define (53)  |  Difficult (263)  |  Error (339)  |  Extensive (34)  |  Force (497)  |  Form (976)  |  Formed (5)  |  Grow (247)  |  Human (1512)  |  Human Mind (133)  |  Incessantly (3)  |  Measure (241)  |  Midst (8)  |  Mind (1377)  |  Nature (2017)  |  Nature Of Mathematics (80)  |  Perceptible (7)  |  Preserve (91)  |  Principle (530)  |  Relation (166)  |  Slowly (19)  |  Space (523)  |  Strengthen (25)  |  Temperature (82)  |  Time (1911)  |  Variation (93)

Now, in the development of our knowledge of the workings of Nature out of the tremendously complex assemblage of phenomena presented to the scientific inquirer, mathematics plays in some respects a very limited, in others a very important part. As regards the limitations, it is merely necessary to refer to the sciences connected with living matter, and to the ologies generally, to see that the facts and their connections are too indistinctly known to render mathematical analysis practicable, to say nothing of the complexity.
From article 'Electro-magnetic Theory II', in The Electrician (16 Jan 1891), 26, No. 661, 331.
Science quotes on:  |  Analysis (244)  |  Assemblage (17)  |  Complex (202)  |  Complexity (121)  |  Connect (126)  |  Connection (171)  |  Development (441)  |  Enquiry (89)  |  Fact (1257)  |  Facts (553)  |  Inquirer (9)  |  Knowledge (1647)  |  Known (453)  |  Limit (294)  |  Limitation (52)  |  Limited (102)  |  Living (492)  |  Mathematics (1395)  |  Matter (821)  |  Merely (315)  |  Nature (2017)  |  Necessary (370)  |  Nothing (1000)  |  Other (2233)  |  Phenomenon (334)  |  Present (630)  |  Regard (312)  |  Render (96)  |  Respect (212)  |  Say (989)  |  Scientific (955)  |  See (1094)  |  Theory (1015)

Objections … inspired Kronecker and others to attack Weierstrass’ “sequential” definition of irrationals. Nevertheless, right or wrong, Weierstrass and his school made the theory work. The most useful results they obtained have not yet been questioned, at least on the ground of their great utility in mathematical analysis and its implications, by any competent judge in his right mind. This does not mean that objections cannot be well taken: it merely calls attention to the fact that in mathematics, as in everything else, this earth is not yet to be confused with the Kingdom of Heaven, that perfection is a chimaera, and that, in the words of Crelle, we can only hope for closer and closer approximations to mathematical truth—whatever that may be, if anything—precisely as in the Weierstrassian theory of convergent sequences of rationals defining irrationals.
In Men of Mathematics (1937), 431-432.
Science quotes on:  |  Analysis (244)  |  Approximation (32)  |  Attack (86)  |  Attention (196)  |  Call (781)  |  Chimera (10)  |  Close (77)  |  Closer (43)  |  Competent (20)  |  Confuse (22)  |  Convergent (3)  |  Define (53)  |  Definition (238)  |  Earth (1076)  |  Everything (489)  |  Fact (1257)  |  Great (1610)  |  Ground (222)  |  Heaven (266)  |  Hope (321)  |  Implication (25)  |  Inspire (58)  |  Irrational (16)  |  Judge (114)  |  Kingdom (80)  |  Kingdom Of Heaven (3)  |  Leopold Kronecker (6)  |  Mathematics (1395)  |  Mean (810)  |  Merely (315)  |  Mind (1377)  |  Most (1728)  |  Nevertheless (90)  |  Objection (34)  |  Obtain (164)  |  Other (2233)  |  Perfection (131)  |  Precise (71)  |  Precisely (93)  |  Question (649)  |  Rational (95)  |  Result (700)  |  Right (473)  |  School (227)  |  Sequence (68)  |  Sequential (2)  |  Theory (1015)  |  Truth (1109)  |  Useful (260)  |  Utility (52)  |   Karl Weierstrass, (10)  |  Whatever (234)  |  Word (650)  |  Work (1402)  |  Wrong (246)

Perhaps H. G. Wells was right when he said ‘statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write’!
From address (28 Dec 1950) to the 110th Annual Meeting of the American Statistical Association in Chicago, when retiring as president of the association. Published in 'Undergraduate Statistical Education', Journal of the American Statistical Association (Mar 1951), 46, No. 253, 5. Note that Wilks is giving his own short paraphrase, and not a verbatim quote from H.G. Wells. Wilks' paraphrase has taken on a life of its own as a quote commonly seen attributed to H.G. Wells, without mention of Wilks, even though the paraphrase wording comes from Wilks’ presidential address. The origin quote comes from H.G. Wells, Mankind in the Making (1903), 204. See the full origin quote on this site Herbert George (H.G.) Wells Quotations page, beginning: “The new mathematics is a sort of supplement to language…”. In fact, Wells referred only to “mathematical analysis” such as “averages and maxima and minima” — and did not specify (more complex) “statistics” at all!
Science quotes on:  |  Ability (162)  |  Citizenship (9)  |  Efficient (34)  |  Necessary (370)  |  Read (308)  |  Right (473)  |  Statistics (170)  |  Think (1122)  |  Herbert George (H.G.) Wells (41)  |  Write (250)

So is not mathematical analysis then not just a vain game of the mind? To the physicist it can only give a convenient language; but isn’t that a mediocre service, which after all we could have done without; and, it is not even to be feared that this artificial language be a veil, interposed between reality and the physicist’s eye? Far from that, without this language most of the intimate analogies of things would forever have remained unknown to us; and we would never have had knowledge of the internal harmony of the world, which is, as we shall see, the only true objective reality.
From La valeur de la science. In Anton Bovier, Statistical Mechanics of Disordered Systems (2006), 3, giving translation "approximately" in the footnote of the opening epigraph in the original French: “L’analyse mathématique, n’est elle donc qu’un vain jeu d’esprit? Elle ne peut pas donner au physicien qu’un langage commode; n’est-ce pa là un médiocre service, dont on aurait pu se passer à la rigueur; et même n’est il pas à craindre que ce langage artificiel ne soit pas un voile interposé entre la réalité at l’oeil du physicien? Loin de là, sans ce langage, la pluspart des anaologies intimes des choses nous seraient demeurées à jamais inconnues; et nous aurions toujours ignoré l’harmonie interne du monde, qui est, nous le verrons, la seule véritable réalité objective.” Another translation, with a longer quote, beginning “Without this language…”, is on the Henri Poincaré Quotes" page of this website.
Science quotes on:  |  Analysis (244)  |  Eye (440)  |  Fear (212)  |  Forever (111)  |  Game (104)  |  Harmony (105)  |  Internal (69)  |  Knowledge (1647)  |  Language (308)  |  Mathematics (1395)  |  Mathematics As A Language (20)  |  Mediocre (14)  |  Mind (1377)  |  Most (1728)  |  Never (1089)  |  Objective (96)  |  Physicist (270)  |  Reality (274)  |  Remain (355)  |  See (1094)  |  Service (110)  |  Thing (1914)  |  Unknown (195)  |  Vain (86)  |  Veil (27)  |  World (1850)

The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics; and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking.
In 'The Mathematician', Works of the Mind (1947), 1, No. 1. Collected in James Roy Newman (ed.), The World of Mathematics (1956), Vol. 4, 2055.
Science quotes on:  |  Achievement (187)  |  Advance (298)  |  Analysis (244)  |  Calculus (65)  |  Constitute (99)  |  Define (53)  |  Development (441)  |  Difficult (263)  |  Exact (75)  |  First (1302)  |  Greatest (330)  |  Importance (299)  |  Inception (3)  |  Logical (57)  |  Mathematics (1395)  |  Modern (402)  |  Modern Mathematics (50)  |  More (2558)  |  Overestimate (3)  |  Still (614)  |  System (545)  |  Technical (53)  |  Think (1122)  |  Thinking (425)  |  Unequivocally (2)

The new mathematics is a sort of supplement to language, affording a means of thought about form and quantity and a means of expression, more exact, compact, and ready than ordinary language. The great body of physical science, a great deal of the essential facts of financial science, and endless social and political problems are only accessible and only thinkable to those who have had a sound training in mathematical analysis, and the time may not be very remote when it will be understood that for complete initiation as an efficient citizen of the great complex world-wide States that are now developing, it is as necessary to be able to compute, to think in averages and maxima and minima, as it is now to be able to read and write.
Mankind in the Making (1903), 204. This is seen in a shorter form, somewhat misquoted in a paraphrase as: “Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.” However, note that in fact, Wells refers only to “mathematical analysis” such as “averages and maxima and minima” — and did not specify (more complex) “statistics” at all! For citation of the paraphrase, see Samuel Wilks Quotations on this site.
Science quotes on:  |  Accessible (27)  |  Analysis (244)  |  Average (89)  |  Body (557)  |  Citizen (52)  |  Compact (13)  |  Complete (209)  |  Complex (202)  |  Computation (28)  |  Deal (192)  |  Endless (60)  |  Essential (210)  |  Expression (181)  |  Fact (1257)  |  Facts (553)  |  Form (976)  |  Great (1610)  |  Initiation (8)  |  Language (308)  |  Mathematics (1395)  |  Maximum (16)  |  Mean (810)  |  Means (587)  |  Minimum (13)  |  More (2558)  |  Necessary (370)  |  Necessity (197)  |  New (1273)  |  Ordinary (167)  |  Physical (518)  |  Physical Science (104)  |  Political (124)  |  Politics (122)  |  Problem (731)  |  Quality (139)  |  Quantity (136)  |  Read (308)  |  Remote (86)  |  Social (261)  |  Society (350)  |  Sound (187)  |  State (505)  |  Supplement (7)  |  Think (1122)  |  Thinkable (5)  |  Thought (995)  |  Time (1911)  |  Training (92)  |  Understood (155)  |  Wide (97)  |  Will (2350)  |  World (1850)  |  Write (250)

The proof given by Wright, that non-adaptive differentiation will occur in small populations owing to “drift,” or the chance fixation of some new mutation or recombination, is one of the most important results of mathematical analysis applied to the facts of neo-mendelism. It gives accident as well as adaptation a place in evolution, and at one stroke explains many facts which puzzled earlier selectionists, notably the much greater degree of divergence shown by island than mainland forms, by forms in isolated lakes than in continuous river-systems.
Evolution: The Modern Synthesis (1942), 199-200.
Science quotes on:  |  Accident (92)  |  Adaptation (59)  |  Analysis (244)  |  Applied (176)  |  Chance (244)  |  Continuous (83)  |  Degree (277)  |  Differentiation (28)  |  Divergence (6)  |  Drift (14)  |  Evolution (635)  |  Explain (334)  |  Fact (1257)  |  Facts (553)  |  Fixation (5)  |  Form (976)  |  Greater (288)  |  Island (49)  |  Lake (36)  |  Mainland (3)  |  Mathematics (1395)  |  Most (1728)  |  Mutation (40)  |  New (1273)  |  Occur (151)  |  Owing (39)  |  Population (115)  |  Proof (304)  |  Result (700)  |  River (140)  |  Small (489)  |  Stroke (19)  |  System (545)  |  Will (2350)

The time is perhaps at hand when it will be recognized that for intelligent living in modern society it is as necessary to be able to think in averages, percentages, and deviations as it is to be able to read and write.
In 'Statistics in Modern Social Thought', collected in H. E. Barnes, et al. (eds.) Contemporary Social Theory (1940), 140.
Science quotes on:  |  At Hand (7)  |  Average (89)  |  Deviation (21)  |  Intelligent (108)  |  Live (650)  |  Modern (402)  |  Necessary (370)  |  Percentage (9)  |  Read (308)  |  Recognize (136)  |  Society (350)  |  Think (1122)  |  Time (1911)  |  Write (250)

The ultimate origin of the difficulty lies in the fact (or philosophical principle) that we are compelled to use the words of common language when we wish to describe a phenomenon, not by logical or mathematical analysis, but by a picture appealing to the imagination. Common language has grown by everyday experience and can never surpass these limits. Classical physics has restricted itself to the use of concepts of this kind; by analysing visible motions it has developed two ways of representing them by elementary processes; moving particles and waves. There is no other way of giving a pictorial description of motions—we have to apply it even in the region of atomic processes, where classical physics breaks down.
Max Born
Atomic Physics (1957), 97.
Science quotes on:  |  Analysis (244)  |  Apply (170)  |  Break (109)  |  Classical (49)  |  Classical Physics (6)  |  Common (447)  |  Concept (242)  |  Describe (132)  |  Develop (278)  |  Difficulty (201)  |  Down (455)  |  Elementary (98)  |  Everyday (32)  |  Experience (494)  |  Fact (1257)  |  Imagination (349)  |  Kind (564)  |  Language (308)  |  Lie (370)  |  Limit (294)  |  Motion (320)  |  Never (1089)  |  Origin (250)  |  Other (2233)  |  Particle (200)  |  Phenomenon (334)  |  Physic (515)  |  Physics (564)  |  Picture (148)  |  Principle (530)  |  Quantum Physics (19)  |  Surpass (33)  |  Two (936)  |  Ultimate (152)  |  Use (771)  |  Visible (87)  |  Wave (112)  |  Way (1214)  |  Wish (216)  |  Word (650)

There is inherent in nature a hidden harmony that reflects itself in our minds under the image of simple mathematical laws. That then is the reason why events in nature are predictable by a combination of observation and mathematical analysis. Again and again in the history of physics this conviction, or should I say this dream, of harmony in nature has found fulfillments beyond our expectations.
…...
Science quotes on:  |  Analysis (244)  |  Beyond (316)  |  Combination (150)  |  Conviction (100)  |  Dream (222)  |  Event (222)  |  Expectation (67)  |  Find (1014)  |  Fulfillment (20)  |  Harmony (105)  |  Hide (70)  |  History (716)  |  History Of Physics (3)  |  Image (97)  |  Inherent (43)  |  Law (913)  |  Mathematics (1395)  |  Mind (1377)  |  Nature (2017)  |  Observation (593)  |  Physic (515)  |  Physics (564)  |  Predictable (10)  |  Reason (766)  |  Reflect (39)  |  Say (989)  |  Simple (426)  |  Why (491)

Those skilled in mathematical analysis know that its object is not simply to calculate numbers, but that it is also employed to find the relations between magnitudes which cannot be expressed in numbers and between functions whose law is not capable of algebraic expression.
In Antoine-Augustin Cournot and Nathaniel T. Bacon (trans.), Mathematical Theory of the Principles of Wealth (1897), Preface, 3.
Science quotes on:  |  Algebraic (5)  |  Analysis (244)  |  Calculate (58)  |  Capable (174)  |  Employ (115)  |  Express (192)  |  Expression (181)  |  Find (1014)  |  Function (235)  |  Know (1538)  |  Law (913)  |  Magnitude (88)  |  Nature Of Mathematics (80)  |  Number (710)  |  Object (438)  |  Relation (166)  |  Simply (53)  |  Skill (116)  |  Skilled (6)

We are told that “Mathematics is that study which knows nothing of observation, nothing of experiment, nothing of induction, nothing of causation.” I think no statement could have been made more opposite to the facts of the case; that mathematical analysis is constantly invoking the aid of new principles, new ideas, and new methods, not capable of being defined by any form of words, but springing direct from the inherent powers and activities of the human mind, and from continually renewed introspection of that inner world of thought of which the phenomena are as varied and require as close attention to discern as those of the outer physical world (to which the inner one in each individual man may, I think, be conceived to stand somewhat in the same relation of correspondence as a shadow to the object from which it is projected, or as the hollow palm of one hand to the closed fist which it grasps of the other), that it is unceasingly calling forth the faculties of observation and comparison, that one of its principal weapons is induction, that it has frequent recourse to experimental trial and verification, and that it affords a boundless scope for the exercise of the highest efforts of the imagination and invention.
In Presidential Address to British Association, Exeter British Association Report (1869), pp. 1-9, in Collected Mathematical Papers, Vol. 2, 654.
Science quotes on:  |  Activity (218)  |  Afford (19)  |  Aid (101)  |  Analysis (244)  |  Attention (196)  |  Being (1276)  |  Boundless (28)  |  Call (781)  |  Capable (174)  |  Case (102)  |  Causation (14)  |  Close (77)  |  Closed (38)  |  Comparison (108)  |  Conceive (100)  |  Constantly (27)  |  Continually (17)  |  Correspondence (24)  |  Define (53)  |  Direct (228)  |  Discern (35)  |  Effort (243)  |  Exercise (113)  |  Experiment (736)  |  Experimental (193)  |  Fact (1257)  |  Facts (553)  |  Faculty (76)  |  Fist (3)  |  Form (976)  |  Forth (14)  |  Frequent (26)  |  Grasp (65)  |  Hand (149)  |  High (370)  |  Hollow (6)  |  Human (1512)  |  Human Mind (133)  |  Idea (881)  |  Imagination (349)  |  Individual (420)  |  Induction (81)  |  Inherent (43)  |  Inner (72)  |  Introspection (6)  |  Invention (400)  |  Invoke (7)  |  Know (1538)  |  Man (2252)  |  Mathematics (1395)  |  Method (531)  |  Mind (1377)  |  More (2558)  |  Nature Of Mathematics (80)  |  New (1273)  |  New Ideas (17)  |  Nothing (1000)  |  Object (438)  |  Observation (593)  |  Opposite (110)  |  Other (2233)  |  Outer (13)  |  Palm (5)  |  Phenomenon (334)  |  Physical (518)  |  Physical World (30)  |  Power (771)  |  Principal (69)  |  Principle (530)  |  Project (77)  |  Recourse (12)  |  Relation (166)  |  Renew (20)  |  Require (229)  |  Same (166)  |  Scope (44)  |  Shadow (73)  |  Spring (140)  |  Stand (284)  |  Statement (148)  |  Study (701)  |  Tell (344)  |  Think (1122)  |  Thought (995)  |  Trial (59)  |  Unceasingly (2)  |  Vary (27)  |  Verification (32)  |  Weapon (98)  |  Weapons (57)  |  Word (650)  |  World (1850)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.