TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 24 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by forces impressed.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index M > Category: Mathematics As A Language

Mathematics As A Language Quotes (20 quotes)

An all-inclusive geometrical symbolism, such as Hamilton and Grassmann conceived of, is impossible.
In 'Über Vectoranalysis', Jahresbericht der Deutschen Mathematiker Vereinigung (1901), 5, 52. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 200. From the original German, “Es kann keine allumfassende geometrische Symbolik geben, wie sie Grassmann und Hamilton sich dachten.”
Science quotes on:  |  Conceive (100)  |  Geometry (271)  |  Hermann Günther Grassmann (3)  |  Sir William Rowan Hamilton (10)  |  Impossible (263)  |  Inclusive (4)  |  Symbol (100)

Anyone who understands algebraic notation, reads at a glance in an equation results reached arithmetically only with great labour and pains.
From Recherches sur les Principes Mathématiques de la Théorie des Richesses (1838), as translated by Nathaniel T. Bacon in 'Preface', Researches Into Mathematical Principles of the Theory of Wealth (1897), 4. From the original French, “Quiconque connaît la notation algébrique, lit d'un clin-d'œil dans une équation le résultat auquel on parvient péniblement par des règles de fausse position, dans l'arithmétique de Banque.”
Science quotes on:  |  Algebra (117)  |  Arithmetic (144)  |  Equation (138)  |  Glance (36)  |  Great (1610)  |  Labor (200)  |  Notation (28)  |  Pain (144)  |  Reach (286)  |  Read (308)  |  Result (700)  |  Understand (648)

As arithmetic and algebra are sciences of great clearness, certainty, and extent, which are immediately conversant about signs, upon the skilful use whereof they entirely depend, so a little attention to them may possibly help us to judge of the progress of the mind in other sciences, which, though differing in nature, design, and object, may yet agree in the general methods of proof and inquiry.
In Alciphron: or the Minute Philosopher, Dialogue 7, collected in The Works of George Berkeley D.D. (1784), Vol. 1, 621.
Science quotes on:  |  Agree (31)  |  Algebra (117)  |  Arithmetic (144)  |  Attention (196)  |  Certainty (180)  |  Clearness (11)  |  Conversant (6)  |  Depend (238)  |  Design (203)  |  Different (595)  |  Entire (50)  |  Extent (142)  |  General (521)  |  Great (1610)  |  Help (116)  |  Immediately (115)  |  Inquiry (88)  |  Judge (114)  |  Little (717)  |  Method (531)  |  Mind (1377)  |  Nature (2017)  |  Object (438)  |  Other (2233)  |  Possibly (111)  |  Progress (492)  |  Proof (304)  |  Sign (63)  |  Skillful (17)  |  Use (771)

Before the introduction of the Arabic notation, multiplication was difficult, and the division even of integers called into play the highest mathematical faculties. Probably nothing in the modern world could have more astonished a Greek mathematician than to learn that, under the influence of compulsory education, the whole population of Western Europe, from the highest to the lowest, could perform the operation of division for the largest numbers. This fact would have seemed to him a sheer impossibility. … Our modern power of easy reckoning with decimal fractions is the most miraculous result of a perfect notation.
In Introduction to Mathematics (1911), 59.
Science quotes on:  |  Arabic (4)  |  Astonish (39)  |  Astonished (10)  |  Call (781)  |  Compulsory (8)  |  Decimal (21)  |  Difficult (263)  |  Division (67)  |  Easy (213)  |  Education (423)  |  Europe (50)  |  Fact (1257)  |  Fraction (16)  |  Greek (109)  |  Impossibility (60)  |  Influence (231)  |  Integer (12)  |  Introduction (37)  |  Largest (39)  |  Learn (672)  |  Mathematician (407)  |  Mathematics (1395)  |  Miraculous (11)  |  Modern (402)  |  Modern World (5)  |  More (2558)  |  Most (1728)  |  Multiplication (46)  |  Notation (28)  |  Nothing (1000)  |  Number (710)  |  Operation (221)  |  Perfect (223)  |  Perform (123)  |  Population (115)  |  Power (771)  |  Probably (50)  |  Reckon (31)  |  Reckoning (19)  |  Result (700)  |  Western (45)  |  Whole (756)  |  World (1850)

In general the position as regards all such new calculi is this That one cannot accomplish by them anything that could not be accomplished without them. However, the advantage is, that, provided such a calculus corresponds to the inmost nature of frequent needs, anyone who masters it thoroughly is able—without the unconscious inspiration of genius which no one can command—to solve the respective problems, yea, to solve them mechanically in complicated cases in which, without such aid, even genius becomes powerless. Such is the case with the invention of general algebra, with the differential calculus, and in a more limited region with Lagrange’s calculus of variations, with my calculus of congruences, and with Möbius’s calculus. Such conceptions unite, as it were, into an organic whole countless problems which otherwise would remain isolated and require for their separate solution more or less application of inventive genius.
Letter (15 May 1843) to Schumacher, collected in Carl Friedrich Gauss Werke (1866), Vol. 8, 298, as translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath's Quotation-book (1914), 197-198. From the original German, “Überhaupt verhält es sich mit allen solchen neuen Calculs so, dass man durch sie nichts leisten kann, was nicht auch ohne sie zu leisten wäre; der Vortheil ist aber der, dass, wenn ein solcher Calcul dem innersten Wesen vielfach vorkommender Bedürfnisse correspondirt, jeder, der sich ihn ganz angeeignet hat, auch ohne die gleichsam unbewussten Inspirationen des Genies, die niemand erzwingen kann, die dahin gehörigen Aufgaben lösen, ja selbst in so verwickelten Fällen gleichsam mechanisch lösen kann, wo ohne eine solche Hülfe auch das Genie ohnmächtig wird. So ist es mit der Erfindung der Buchstabenrechnung überhaupt; so mit der Differentialrechnung gewesen; so ist es auch (wenn auch in partielleren Sphären) mit Lagranges Variationsrechnung, mit meiner Congruenzenrechnung und mit Möbius' Calcul. Es werden durch solche Conceptionen unzählige Aufgaben, die sonst vereinzelt stehen, und jedesmal neue Efforts (kleinere oder grössere) des Erfindungsgeistes erfordern, gleichsam zu einem organischen Reiche.”
Science quotes on:  |  Accomplishment (102)  |  Advantage (144)  |  Aid (101)  |  Algebra (117)  |  Application (257)  |  Become (821)  |  Calculus (65)  |  Command (60)  |  Complicated (117)  |  Conception (160)  |  Congruence (3)  |  Countless (39)  |  Differential Calculus (11)  |  Frequent (26)  |  General (521)  |  Genius (301)  |  Inmost (2)  |  Inspiration (80)  |  Invention (400)  |  Inventive (10)  |  Isolate (24)  |  Count Joseph-Louis de Lagrange (26)  |  Limit (294)  |  Limited (102)  |  Master (182)  |  Mechanical (145)  |  August Möbius (2)  |  More (2558)  |  More Or Less (71)  |  Nature (2017)  |  Need (320)  |  New (1273)  |  Organic (161)  |  Position (83)  |  Powerless (7)  |  Problem (731)  |  Regard (312)  |  Region (40)  |  Remain (355)  |  Require (229)  |  Respective (2)  |  Separate (151)  |  Solution (282)  |  Solve (145)  |  Thorough (40)  |  Thoroughly (67)  |  Unconscious (24)  |  Unite (43)  |  Variation (93)  |  Whole (756)

It is the symbolic language of mathematics only which has yet proved sufficiently accurate and comprehensive to demand familiarity with this conception of an inverse process.
In 'The Symbol of Division', Symbolic Logic (1894), 74, footnote.
Science quotes on:  |  Accurate (88)  |  Comprehensive (29)  |  Concept (242)  |  Conception (160)  |  Demand (131)  |  Familiarity (21)  |  Inverse (7)  |  Language (308)  |  Mathematics (1395)  |  Process (439)  |  Sufficient (133)  |  Symbol (100)

Mathematical language is not only the simplest and most easily understood of any, but the shortest also.
In Works of Henry, Lord Brougham: Vol. 7: Rhetorical and literary Dissertions and Addresses (1856), 317, footnote.
Science quotes on:  |  Easy (213)  |  Language (308)  |  Mathematics (1395)  |  Most (1728)  |  Short (200)  |  Shortest (16)  |  Simple (426)  |  Understand (648)  |  Understood (155)

Mathematics is often considered a difficult and mysterious science, because of the numerous symbols which it employs. Of course, nothing is more incomprehensible than a symbolism which we do not understand. … But this is not because they are difficult in themselves. On the contrary they have invariably been introduced to make things easy. … [T]he symbolism is invariably an immense simplification. It … represents an analysis of the ideas of the subject and an almost pictorial representation of their relations to each other.
In Introduction to Mathematics (1911), 59-60.
Science quotes on:  |  Analysis (244)  |  Consider (428)  |  Contrary (143)  |  Course (413)  |  Difficult (263)  |  Do (1905)  |  Easy (213)  |  Employ (115)  |  Idea (881)  |  Immense (89)  |  Incomprehensible (31)  |  Introduced (3)  |  Invariably (35)  |  Mathematics (1395)  |  More (2558)  |  Mysterious (83)  |  Nothing (1000)  |  Numerous (70)  |  Other (2233)  |  Pictorial (2)  |  Relation (166)  |  Represent (157)  |  Representation (55)  |  Simplification (20)  |  Subject (543)  |  Symbol (100)  |  Themselves (433)  |  Thing (1914)  |  Understand (648)

Mathematics is the science of definiteness, the necessary vocabulary of those who know.
In A Scrap-book of Elementary Mathematics: Notes, Recreations, Essays (1908), 7.
Science quotes on:  |  Definite (114)  |  Know (1538)  |  Mathematics (1395)  |  Necessary (370)  |  Vocabulary (10)

So is not mathematical analysis then not just a vain game of the mind? To the physicist it can only give a convenient language; but isn’t that a mediocre service, which after all we could have done without; and, it is not even to be feared that this artificial language be a veil, interposed between reality and the physicist’s eye? Far from that, without this language most of the intimate analogies of things would forever have remained unknown to us; and we would never have had knowledge of the internal harmony of the world, which is, as we shall see, the only true objective reality.
From La valeur de la science. In Anton Bovier, Statistical Mechanics of Disordered Systems (2006), 3, giving translation "approximately" in the footnote of the opening epigraph in the original French: “L’analyse mathématique, n’est elle donc qu’un vain jeu d’esprit? Elle ne peut pas donner au physicien qu’un langage commode; n’est-ce pa là un médiocre service, dont on aurait pu se passer à la rigueur; et même n’est il pas à craindre que ce langage artificiel ne soit pas un voile interposé entre la réalité at l’oeil du physicien? Loin de là, sans ce langage, la pluspart des anaologies intimes des choses nous seraient demeurées à jamais inconnues; et nous aurions toujours ignoré l’harmonie interne du monde, qui est, nous le verrons, la seule véritable réalité objective.” Another translation, with a longer quote, beginning “Without this language…”, is on the Henri Poincaré Quotes" page of this website.
Science quotes on:  |  Analysis (244)  |  Eye (440)  |  Fear (212)  |  Forever (111)  |  Game (104)  |  Harmony (105)  |  Internal (69)  |  Knowledge (1647)  |  Language (308)  |  Mathematical Analysis (23)  |  Mathematics (1395)  |  Mediocre (14)  |  Mind (1377)  |  Most (1728)  |  Never (1089)  |  Objective (96)  |  Physicist (270)  |  Reality (274)  |  Remain (355)  |  See (1094)  |  Service (110)  |  Thing (1914)  |  Unknown (195)  |  Vain (86)  |  Veil (27)  |  World (1850)

Symbolism is useful because it makes things difficult. Now in the beginning everything is self-evident, and it is hard to see whether one self-evident proposition follows from another or not. Obviousness is always the enemy to correctness. Hence we must invent a new and difficult symbolism in which nothing is obvious. … Thus the whole of Arithmetic and Algebra has been shown to require three indefinable notions and five indemonstrable propositions.
In International Monthly (1901), 4, 85-86.
Science quotes on:  |  Algebra (117)  |  Arithmetic (144)  |  Begin (275)  |  Beginning (312)  |  Correct (95)  |  Difficult (263)  |  Enemy (86)  |  Everything (489)  |  Evident (92)  |  Follow (389)  |  Hard (246)  |  Indefinable (5)  |  Invent (57)  |  Must (1525)  |  New (1273)  |  Nothing (1000)  |  Notion (120)  |  Obvious (128)  |  Obviousness (3)  |  Proposition (126)  |  Require (229)  |  See (1094)  |  Self (268)  |  Self-Evident (22)  |  Show (353)  |  Symbolism (5)  |  Thing (1914)  |  Useful (260)  |  Whole (756)

The domain, over which the language of analysis extends its sway, is, indeed, relatively limited, but within this domain it so infinitely excels ordinary language that its attempt to follow the former must be given up after a few steps. The mathematician, who knows how to think in this marvelously condensed language, is as different from the mechanical computer as heaven from earth.
In Jahresberichte der Deutschen Mathematiker Vereinigung, 13, 367. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-Book (1914), 197.
Science quotes on:  |  Analysis (244)  |  Attempt (266)  |  Computer (131)  |  Condense (15)  |  Different (595)  |  Domain (72)  |  Earth (1076)  |  Excel (4)  |  Extend (129)  |  Follow (389)  |  Former (138)  |  Heaven (266)  |  Indeed (323)  |  Infinite (243)  |  Know (1538)  |  Language (308)  |  Limit (294)  |  Limited (102)  |  Marvelous (31)  |  Mathematician (407)  |  Mechanical (145)  |  Must (1525)  |  Ordinary (167)  |  Relatively (8)  |  Step (234)  |  Sway (5)  |  Think (1122)

The employment of mathematical symbols is perfectly natural when the relations between magnitudes are under discussion; and even if they are not rigorously necessary, it would hardly be reasonable to reject them, because they are not equally familiar to all readers and because they have sometimes been wrongly used, if they are able to facilitate the exposition of problems, to render it more concise, to open the way to more extended developments, and to avoid the digressions of vague argumentation.
From Recherches sur les Principes Mathématiques de la Théorie des Richesses (1838), as translated by Nathaniel T. Bacon in 'Preface', Researches Into Mathematical Principles of the Theory of Wealth (1897), 3-4. From the original French, “L’emploi des signes mathématiques est chose naturelle toutes les fois qu'il s'agit de discuter des relations entre des grandeurs ; et lors même qu’ils ne seraient pas rigoureusement nécessaires, s’ils peuvent faciliter l’exposition, la rendre plus concise, mettre sur la voie de développements plus étendus, prévenir les écarts d’une vague argumentation, il serait peu philosophique de les rebuter, parce qu'ils ne sont pas également familiers à tous les lecteurs et qu'on s'en est quelquefois servi à faux.”
Science quotes on:  |  Avoid (123)  |  Concise (9)  |  Development (441)  |  Digression (3)  |  Discussion (78)  |  Employment (34)  |  Equally (129)  |  Exposition (16)  |  Extend (129)  |  Facilitate (6)  |  Familiar (47)  |  Magnitude (88)  |  Mathematics (1395)  |  More (2558)  |  Natural (810)  |  Necessary (370)  |  Open (277)  |  Problem (731)  |  Reader (42)  |  Reasonable (29)  |  Reject (67)  |  Relation (166)  |  Render (96)  |  Rigorous (50)  |  Symbol (100)  |  Vague (50)  |  Way (1214)  |  Wrong (246)

The invention of what we may call primary or fundamental notation has been but little indebted to analogy, evidently owing to the small extent of ideas in which comparison can be made useful. But at the same time analogy should be attended to, even if for no other reason than that, by making the invention of notation an art, the exertion of individual caprice ceases to be allowable. Nothing is more easy than the invention of notation, and nothing of worse example and consequence than the confusion of mathematical expressions by unknown symbols. If new notation be advisable, permanently or temporarily, it should carry with it some mark of distinction from that which is already in use, unless it be a demonstrable extension of the latter.
In 'Calculus of Functions', Encyclopaedia of Pure Mathematics (1847), Addition to Article 26, 388.
Science quotes on:  |  Allowable (2)  |  Already (226)  |  Analogy (76)  |  Art (680)  |  Attend (67)  |  Call (781)  |  Caprice (10)  |  Carry (130)  |  Cease (81)  |  Comparison (108)  |  Confusion (61)  |  Consequence (220)  |  Distinction (72)  |  Easy (213)  |  Evidently (26)  |  Example (98)  |  Exertion (17)  |  Expression (181)  |  Extension (60)  |  Extent (142)  |  Fundamental (264)  |  Idea (881)  |  Individual (420)  |  Invention (400)  |  Little (717)  |  Making (300)  |  Mathematics (1395)  |  More (2558)  |  New (1273)  |  Notation (28)  |  Nothing (1000)  |  Other (2233)  |  Owing (39)  |  Permanent (67)  |  Primary (82)  |  Reason (766)  |  Same (166)  |  Small (489)  |  Symbol (100)  |  Temporary (24)  |  Time (1911)  |  Unknown (195)  |  Use (771)  |  Useful (260)  |  Worse (25)

The language of analysis, most perfect of all, being in itself a powerful instrument of discoveries, its notations, especially when they are necessary and happily conceived, are so many germs of new calculi.
From Theorie Analytique des Probabilités (1812), 7. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 200. From the original French, “La langue de l’Analyse, la plus parfaite de toutes, étant par elle-même un puissant instrument de découvertes, ses notations, lorsqu’elles sont nécessaires et heureusement imaginées, sont autant de germes de nouveaux calculs.”
Science quotes on:  |  Analysis (244)  |  Being (1276)  |  Calculation (134)  |  Conceive (100)  |  Discovery (837)  |  Germ (54)  |  Instrument (158)  |  Language (308)  |  Most (1728)  |  Necessary (370)  |  New (1273)  |  Notation (28)  |  Perfect (223)  |  Powerful (145)

The most striking characteristic of the written language of algebra and of the higher forms of the calculus is the sharpness of definition, by which we are enabled to reason upon the symbols by the mere laws of verbal logic, discharging our minds entirely of the meaning of the symbols, until we have reached a stage of the process where we desire to interpret our results. The ability to attend to the symbols, and to perform the verbal, visible changes in the position of them permitted by the logical rules of the science, without allowing the mind to be perplexed with the meaning of the symbols until the result is reached which you wish to interpret, is a fundamental part of what is called analytical power. Many students find themselves perplexed by a perpetual attempt to interpret not only the result, but each step of the process. They thus lose much of the benefit of the labor-saving machinery of the calculus and are, indeed, frequently incapacitated for using it.
In 'Uses of Mathesis', Bibliotheca Sacra (Jul 1875), 32, 505.
Science quotes on:  |  Ability (162)  |  Algebra (117)  |  Analysis (244)  |  Attempt (266)  |  Attend (67)  |  Benefit (123)  |  Calculus (65)  |  Call (781)  |  Change (639)  |  Characteristic (154)  |  Definition (238)  |  Desire (212)  |  Find (1014)  |  Form (976)  |  Fundamental (264)  |  Incapacitate (2)  |  Indeed (323)  |  Interpret (25)  |  Labor (200)  |  Labor-Saving (3)  |  Language (308)  |  Law (913)  |  Logic (311)  |  Lose (165)  |  Machinery (59)  |  Meaning (244)  |  Mind (1377)  |  Most (1728)  |  Perform (123)  |  Perpetual (59)  |  Perplex (6)  |  Power (771)  |  Process (439)  |  Reach (286)  |  Reason (766)  |  Result (700)  |  Rule (307)  |  Sharp (17)  |  Sharpness (9)  |  Stage (152)  |  Step (234)  |  Striking (48)  |  Student (317)  |  Symbol (100)  |  Themselves (433)  |  Visible (87)  |  Wish (216)

The prominent reason why a mathematician can be judged by none but mathematicians, is that he uses a peculiar language. The language of mathesis is special and untranslatable. In its simplest forms it can be translated, as, for instance, we say a right angle to mean a square corner. But you go a little higher in the science of mathematics, and it is impossible to dispense with a peculiar language. It would defy all the power of Mercury himself to explain to a person ignorant of the science what is meant by the single phrase “functional exponent.” How much more impossible, if we may say so, would it be to explain a whole treatise like Hamilton’s Quaternions, in such a wise as to make it possible to judge of its value! But to one who has learned this language, it is the most precise and clear of all modes of expression. It discloses the thought exactly as conceived by the writer, with more or less beauty of form, but never with obscurity. It may be prolix, as it often is among French writers; may delight in mere verbal metamorphoses, as in the Cambridge University of England; or adopt the briefest and clearest forms, as under the pens of the geometers of our Cambridge; but it always reveals to us precisely the writer’s thought.
In North American Review (Jul 1857), 85, 224-225.
Science quotes on:  |  Adopt (22)  |  Beauty (313)  |  Brief (37)  |  Cambridge (17)  |  Cambridge University (2)  |  Clear (111)  |  Conceive (100)  |  Corner (59)  |  Defy (11)  |  Delight (111)  |  Disclose (19)  |  Dispense (10)  |  England (43)  |  Exact (75)  |  Explain (334)  |  Exponent (6)  |  Expression (181)  |  Form (976)  |  French (21)  |  Function (235)  |  Geometer (24)  |  Hamilton_William (2)  |  Himself (461)  |  Ignorant (91)  |  Impossible (263)  |  Judge (114)  |  Language (308)  |  Learn (672)  |  Learned (235)  |  Little (717)  |  Mathematician (407)  |  Mathematics (1395)  |  Mean (810)  |  Mercury (54)  |  Metamorphose (2)  |  More (2558)  |  More Or Less (71)  |  Most (1728)  |  Never (1089)  |  Obscure (66)  |  Peculiar (115)  |  Pen (21)  |  Person (366)  |  Phrase (61)  |  Possible (560)  |  Power (771)  |  Precise (71)  |  Precisely (93)  |  Prolix (2)  |  Prominent (6)  |  Quaternion (9)  |  Reason (766)  |  Reveal (152)  |  Right (473)  |  Right Angle (4)  |  Say (989)  |  Simple (426)  |  Single (365)  |  Special (188)  |  Square (73)  |  Thought (995)  |  Translate (21)  |  Treatise (46)  |  University (130)  |  Use (771)  |  Value (393)  |  Verbal (10)  |  Whole (756)  |  Why (491)  |  Wise (143)  |  Writer (90)

The results of systematic symbolical reasoning must always express general truths, by their nature; and do not, for their justification, require each of the steps of the process to represent some definite operation upon quantity. The absolute universality of the interpretation of symbols is the fundamental principle of their use.
In 'The Foundations of Higher Mathematics', The Philosophy of the Inductive Sciences (1847), Part I, Bk. 2, 149.
Science quotes on:  |  Absolute (153)  |  Definite (114)  |  Do (1905)  |  Express (192)  |  Fundamental (264)  |  General (521)  |  Interpretation (89)  |  Justification (52)  |  Must (1525)  |  Nature (2017)  |  Operation (221)  |  Principle (530)  |  Process (439)  |  Quantity (136)  |  Reasoning (212)  |  Represent (157)  |  Require (229)  |  Result (700)  |  Step (234)  |  Symbol (100)  |  Systematic (58)  |  Truth (1109)  |  Universal (198)  |  Universality (22)  |  Use (771)

Without this language [mathematics] most of the intimate analogies of things would have remained forever unknown to us; and we should forever have been ignorant of the internal harmony of the world, which is the only true objective reality. …
This harmony … is the sole objective reality, the only truth we can attain; and when I add that the universal harmony of the world is the source of all beauty, it will be understood what price we should attach to the slow and difficult progress which little by little enables us to know it better.
From La Valeur de la Science, as translated by George Bruce Halsted, in 'The Value of Science', Popular Science Monthly (Sep 1906), 69 195-196.
Science quotes on:  |  Analogy (76)  |  Attach (57)  |  Attain (126)  |  Beauty (313)  |  Better (493)  |  Difficult (263)  |  Enable (122)  |  Forever (111)  |  Harmony (105)  |  Ignorant (91)  |  Internal (69)  |  Intimate (21)  |  Know (1538)  |  Language (308)  |  Little (717)  |  Mathematics (1395)  |  Most (1728)  |  Objective (96)  |  Price (57)  |  Progress (492)  |  Reality (274)  |  Remain (355)  |  Slow (108)  |  Sole (50)  |  Source (101)  |  Thing (1914)  |  True (239)  |  Truth (1109)  |  Understand (648)  |  Understood (155)  |  Universal (198)  |  Unknown (195)  |  Will (2350)  |  World (1850)

Would it sound too presumptuous to speak of perception as a quintessence of sensation, language (that is, communicable thought) of perception, mathematics of language? We should then have four terms differentiating from inorganic matter and from each other the Vegetable, Animal, Rational, and Super-sensual modes of existence.
From Presidential Address (1869) to the British Association, Exeter, Section A, collected in Collected Mathematical Papers of James Joseph Sylvester (1908), Vol. 2, 652, footnote.
Science quotes on:  |  Animal (651)  |  Differentiate (19)  |  Existence (481)  |  Inorganic (14)  |  Language (308)  |  Mathematics (1395)  |  Matter (821)  |  Other (2233)  |  Perception (97)  |  Quintessence (4)  |  Rational (95)  |  Sensation (60)  |  Sound (187)  |  Speak (240)  |  Term (357)  |  Terms (184)  |  Thought (995)  |  Vegetable (49)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.