Celebrating 19 Years on the Web
TODAY IN SCIENCE HISTORY ®
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by forces impressed.”
more quiz questions >>
Home > Dictionary of Science Quotations > Scientist Names Index L > Count Joseph-Louis de Lagrange Quotes

Count Joseph-Louis de Lagrange
(25 Jan 1736 - 10 Apr 1813)

Italian-French astronomer and mathematician.


Science Quotes by Count Joseph-Louis de Lagrange (7 quotes)

As long as algebra and geometry proceeded along separate paths, their advance was slow and their applications limited. But when these sciences joined company, they drew from each other fresh vitality and thenceforward marched on at a rapid pace toward perfection.
— Count Joseph-Louis de Lagrange
In Leçons Élémentaires sur la Mathematiques, Leçon cinquième. As quoted and cited in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-Book (1914), 81.
Science quotes on:  |  Advance (280)  |  Algebra (113)  |  Application (242)  |  Company (59)  |  Fresh (67)  |  Geometry (255)  |  Join (26)  |  Limit (280)  |  Limited (101)  |  Long (790)  |  March (46)  |  Other (2236)  |  Pace (14)  |  Path (144)  |  Perfection (129)  |  Proceed (129)  |  Rapid (33)  |  Science (3879)  |  Separate (143)  |  Slow (101)  |  Teaching of Mathematics (39)  |  Vitality (23)

I had begun it, it will now be unnecessary for me to finish it.[At a late age, expressing his enthusiasm for mathematics had gone, as when informed of some other mathematician's current work.]
— Count Joseph-Louis de Lagrange
As quoted by Charles Hutton in A Philosophical and Mathematical Dictionary (1815), Vol. 1, 708.
Science quotes on:  |  Age (499)  |  Beginning (305)  |  Current (118)  |  Enthusiasm (52)  |  Finish (59)  |  Inform (47)  |  Late (118)  |  Mathematics (1328)  |  Other (2236)  |  Unnecessary (23)  |  Will (2355)  |  Work (1351)

I regarded as quite useless the reading of large treatises of pure analysis: too large a number of methods pass at once before the eyes. It is in the works of application that one must study them; one judges their utility there and appraises the manner of making use of them.
— Count Joseph-Louis de Lagrange
As reported by J. F. Maurice in Moniteur Universel (1814), 228.
Science quotes on:  |  Analysis (233)  |  Application (242)  |  Eye (419)  |  Judge (108)  |  Large (394)  |  Making (300)  |  Method (505)  |  Methods (204)  |  Must (1526)  |  Number (699)  |  Pass (238)  |  Pure (291)  |  Reading (133)  |  Regard (305)  |  Study (653)  |  Treatise (44)  |  Use (766)  |  Utility (49)  |  Work (1351)

It has cost them but a moment to cut off that head; but a hundred years will not be sufficient to produce another like it.
— Count Joseph-Louis de Lagrange
Comment to Delambre about Lavoisier, who was executed on 8 May 1794. As quoted by Charles Hutton in A Philosophical and Mathematical Dictionary (1815), Vol. 1, 708. The quotation is given in Douglas McKie, Antoine Lavoisier: The Father of Modern Chemistry (1935), 299, as: “Only a moment to cut off this head and perhaps a hundred years before we shall have another like it.” In The Doctor Explains (1931), 134-135, Ralph Hermon Major words it as, “It took but an instant to cut off his head; a hundred years will not suffice to produce one like it,” but in A History of Medicine (1954), Vol. 2, 618, Major repeats it as, “A moment was sufficient to sever his head, but a hundred years will not be enough perhaps to produce another like it.” Please contact Webmaster if you know the primary source, presumably in French.
Science quotes on:  |  Cost (86)  |  Cut (114)  |  Death (388)  |  Execution (25)  |  Hundred (229)  |  Intellect (233)  |  Antoine-Laurent Lavoisier (40)  |  Moment (253)  |  Sufficient (128)  |  Will (2355)  |  Year (933)

Newton was the greatest genius that ever existed, and the most fortunate, for we cannot find more than once a system of the world to establish.
— Count Joseph-Louis de Lagrange
Quoted by F. R. Moulton, in Introduction to Astronomy (1906), 199.
Science quotes on:  |  Establish (57)  |  Exist (443)  |  Find (998)  |  Fortunate (26)  |  Genius (284)  |  Great (1574)  |  Greatest (328)  |  Mathematicians and Anecdotes (141)  |  More (2559)  |  Most (1731)  |  Sir Isaac Newton (333)  |  System (537)  |  World (1774)

The reader will find no figures in this work. The methods which I set forth do not require either constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of procedure.
— Count Joseph-Louis de Lagrange
From the original French, “On ne trouvera point de Figures dans set Ouvrage. Les méthodes que j’y expose ne demandent ni constructions, ni raisonnements géométriqus ou méchaniques, mais seulement des opérations algébriques, assujetties à une march régulière et uniforme.” In 'Avertissement', Mécanique Analytique (1788, 1811), Vol. 1, i. English version as given in Cornelius Lanczos, The Variational Principles of Mechanics (1966), Vol. 1, 347.
Science quotes on:  |  Algebra (113)  |  Construction (112)  |  Do (1908)  |  Figure (160)  |  Find (998)  |  Geometry (255)  |  Mechanical (140)  |  Method (505)  |  Methods (204)  |  Operation (213)  |  Operations (107)  |  Procedure (41)  |  Reader (40)  |  Reasoning (207)  |  Regular (46)  |  Require (219)  |  Rule (294)  |  Set (394)  |  Subject (521)  |  Uniform (18)  |  Will (2355)  |  Work (1351)

There being only one universe to be explained, nobody could repeat the act of Newton, the luckiest of mortals
— Count Joseph-Louis de Lagrange
As stated, without quotation marks, without citation, in Alexandre Koyré, 'The Significance of the Newtonian Synthesis', The Journal of General Education (Jul 1950), 4, 265.
Science quotes on:  |  Act (272)  |  Being (1278)  |  Explain (322)  |  Lucky (13)  |  Mortal (54)  |  Newton (10)  |  Nobody (104)  |  Repeat (42)  |  Universe (857)



Quotes by others about Count Joseph-Louis de Lagrange (19)

Lagrange, in one of the later years of his life, imagined that he had overcome the difficulty (of the parallel axiom). He went so far as to write a paper, which he took with him to the Institute, and began to read it. But in the first paragraph something struck him that he had not observed: he muttered: 'Il faut que j'y songe encore', and put the paper in his pocket.' [I must think about it again]
Budget of Paradoxes (1872), 173.
Science quotes on:  |  Axiom (63)  |  Difficulty (196)  |  First (1283)  |  Life (1795)  |  Mathematics (1328)  |  Must (1526)  |  Observed (149)  |  Overcome (39)  |  Paper (182)  |  Parallel (43)  |  Read (287)  |  Something (719)  |  Think (1086)  |  Write (230)  |  Year (933)

Then one day Lagrange took out of his pocket a paper which he read at the Académe, and which contained a demonstration of the famous Postulatum of Euclid, relative to the theory of parallels. This demonstration rested on an obvious paralogism, which appeared as such to everybody; and probably Lagrange also recognised it such during his lecture. For, when he had finished, he put the paper back in his pocket, and spoke no more of it. A moment of universal silence followed, and one passed immediately to other concerns.
Quoting Lagrange at a meeting of the class of mathematical and physical sciences at the Institut de France (3 Feb 1806) in Journal des Savants (1837), 84, trans. Ivor Grattan-Guinness.
Science quotes on:  |  Back (390)  |  Concern (228)  |  Demonstration (113)  |  Euclid (54)  |  Everybody (70)  |  Finish (59)  |  Follow (378)  |  Immediately (114)  |  Lecture (105)  |  Moment (253)  |  More (2559)  |  Obvious (126)  |  Other (2236)  |  Paper (182)  |  Parallel (43)  |  Pass (238)  |  Read (287)  |  Rest (280)  |  Silence (56)  |  Theory (970)  |  Universal (189)

The genius of Laplace was a perfect sledge hammer in bursting purely mathematical obstacles; but, like that useful instrument, it gave neither finish nor beauty to the results. In truth, in truism if the reader please, Laplace was neither Lagrange nor Euler, as every student is made to feel. The second is power and symmetry, the third power and simplicity; the first is power without either symmetry or simplicity. But, nevertheless, Laplace never attempted investigation of a subject without leaving upon it the marks of difficulties conquered: sometimes clumsily, sometimes indirectly, always without minuteness of design or arrangement of detail; but still, his end is obtained and the difficulty is conquered.
In 'Review of “Théorie Analytique des Probabilites” par M. le Marquis de Laplace, 3eme edition. Paris. 1820', Dublin Review (1837), 2, 348.
Science quotes on:  |  Arrangement (91)  |  Attempt (251)  |  Beauty (299)  |  Clumsiness (2)  |  Conquer (37)  |  Design (195)  |  Detail (146)  |  Difficulty (196)  |  End (590)  |  Leonhard Euler (35)  |  Feel (367)  |  Finish (59)  |  First (1283)  |  Genius (284)  |  Hammer (25)  |  Instrument (144)  |  Investigation (230)  |  Pierre-Simon Laplace (62)  |  Mathematics (1328)  |  Minuteness (8)  |  Never (1087)  |  Nevertheless (90)  |  Obstacle (42)  |  Obtain (163)  |  Perfect (216)  |  Please (65)  |  Power (746)  |  Purely (109)  |  Result (677)  |  Simplicity (167)  |  Sledge Hammer (3)  |  Still (613)  |  Student (300)  |  Subject (521)  |  Symmetry (43)  |  Truth (1057)  |  Useful (250)

The great masters of modern analysis are Lagrange, Laplace, and Gauss, who were contemporaries. It is interesting to note the marked contrast in their styles. Lagrange is perfect both in form and matter, he is careful to explain his procedure, and though his arguments are general they are easy to follow. Laplace on the other hand explains nothing, is indifferent to style, and, if satisfied that his results are correct, is content to leave them either with no proof or with a faulty one. Gauss is as exact and elegant as Lagrange, but even more difficult to follow than Laplace, for he removes every trace of the analysis by which he reached his results, and studies to give a proof which while rigorous shall be as concise and synthetical as possible.
In History of Mathematics (3rd Ed., 1901), 468.
Science quotes on:  |  Analysis (233)  |  Anecdote (21)  |  Argument (138)  |  Both (493)  |  Concise (8)  |  Contemporary (30)  |  Content (69)  |  Contrast (44)  |  Correct (86)  |  Difficult (246)  |  Easy (204)  |  Elegant (36)  |  Exact (68)  |  Explain (322)  |  Explanation (234)  |  Faulty (3)  |  Follow (378)  |  Form (959)  |  Carl Friedrich Gauss (77)  |  General (511)  |  Great (1574)  |  Interesting (153)  |  Pierre-Simon Laplace (62)  |  Leave (130)  |  Marked (55)  |  Master (178)  |  Mathematicians and Anecdotes (141)  |  Matter (798)  |  Modern (385)  |  More (2559)  |  Nothing (966)  |  Other (2236)  |  Perfect (216)  |  Perfection (129)  |  Possible (552)  |  Procedure (41)  |  Proof (287)  |  Reach (281)  |  Reasoning (207)  |  Remove (45)  |  Result (677)  |  Rigor (27)  |  Rigorous (48)  |  Satisfy (27)  |  Style (23)  |  Synthetic (26)  |  Trace (103)

Accordingly, we find Euler and D'Alembert devoting their talent and their patience to the establishment of the laws of rotation of the solid bodies. Lagrange has incorporated his own analysis of the problem with his general treatment of mechanics, and since his time M. Poinsôt has brought the subject under the power of a more searching analysis than that of the calculus, in which ideas take the place of symbols, and intelligent propositions supersede equations.
J. C. Maxwell on Louis Poinsôt (1777-1859) in 'On a Dynamical Top' (1857). In W. D. Niven (ed.), The Scientific Papers of James Clerk Maxwell (1890), Vol. 1, 248.
Science quotes on:  |  Analysis (233)  |  Calculus (65)  |  Jean le Rond D’Alembert (11)  |  Equation (132)  |  Establishment (47)  |  Leonhard Euler (35)  |  Find (998)  |  General (511)  |  Idea (843)  |  Intelligent (100)  |  Law (894)  |  Mechanic (119)  |  Mechanics (131)  |  More (2559)  |  Patience (56)  |  Louis Poinsot (3)  |  Power (746)  |  Problem (676)  |  Proposition (123)  |  Rotation (12)  |  Solid (116)  |  Subject (521)  |  Symbol (93)  |  Talent (94)  |  Time (1877)  |  Treatment (130)

There was yet another disadvantage attaching to the whole of Newton’s physical inquiries, ... the want of an appropriate notation for expressing the conditions of a dynamical problem, and the general principles by which its solution must be obtained. By the labours of LaGrange, the motions of a disturbed planet are reduced with all their complication and variety to a purely mathematical question. It then ceases to be a physical problem; the disturbed and disturbing planet are alike vanished: the ideas of time and force are at an end; the very elements of the orbit have disappeared, or only exist as arbitrary characters in a mathematical formula
Address to the Mechanics Institute, 'An Address on the Genius and Discoveries of Sir Isaac Newton' (1835), excerpted in paper by Luis M. Laita, Luis de Ledesma, Eugenio Roanes-Lozano and Alberto Brunori, 'George Boole, a Forerunner of Symbolic Computation', collected in John A. Campbell and Eugenio Roanes-Lozano (eds.), Artificial Intelligence and Symbolic Computation: International Conference AISC 2000 (2001), 3.
Science quotes on:  |   (2863)  |  Alike (60)  |  All (4108)  |  Appropriate (61)  |  Arbitrary (26)  |  Cease (79)  |  Character (243)  |  Complication (29)  |  Condition (356)  |  Disadvantage (10)  |  Disappear (82)  |  Disappearance (28)  |  Disturb (28)  |  Disturbance (31)  |  Disturbed (15)  |  Dynamical (15)  |  Dynamics (9)  |  Element (310)  |  End (590)  |  Exist (443)  |  Expression (175)  |  Force (487)  |  Formula (98)  |  General (511)  |  Idea (843)  |  Inquiry (78)  |  Labour (98)  |  Motion (310)  |  Must (1526)  |  Sir Isaac Newton (333)  |  Notation (27)  |  Obtain (163)  |  Orbit (81)  |  Physical (508)  |  Planet (356)  |  Principle (507)  |  Problem (676)  |  Pure Mathematics (67)  |  Purely (109)  |  Question (621)  |  Solution (267)  |  Time (1877)  |  Vanishing (11)  |  Variety (132)  |  Want (497)  |  Whole (738)

Simple as the law of gravity now appears, and beautifully in accordance with all the observations of past and of present times, consider what it has cost of intellectual study. Copernicus, Galileo, Kepler, Euler, Lagrange, Laplace, all the great names which have exalted the character of man, by carrying out trains of reasoning unparalleled in every other science; these, and a host of others, each of whom might have been the Newton of another field, have all labored to work out, the consequences which resulted from that single law which he discovered. All that the human mind has produced—the brightest in genius, the most persevering in application, has been lavished on the details of the law of gravity.
in The Ninth Bridgewater Treatise: A Fragment (1838), 57.
Science quotes on:  |  All (4108)  |  Application (242)  |  Brightest (12)  |  Carrying Out (13)  |  Character (243)  |  Consequence (203)  |  Consider (416)  |  Nicolaus Copernicus (48)  |  Cost (86)  |  Detail (146)  |  Discover (553)  |  Leonhard Euler (35)  |  Exalt (27)  |  Exalted (22)  |  Field (364)  |  Galileo Galilei (122)  |  Genius (284)  |  Gravity (132)  |  Great (1574)  |  Human (1468)  |  Human Mind (128)  |  Intellect (233)  |  Intellectual (255)  |  Johannes Kepler (91)  |  Labor (107)  |  Pierre-Simon Laplace (62)  |  Law (894)  |  Law Of Gravity (15)  |  Man (2251)  |  Mind (1338)  |  Most (1731)  |  Name (333)  |  Sir Isaac Newton (333)  |  Observation (555)  |  Other (2236)  |  Past (337)  |  Present (619)  |  Produced (187)  |  Reasoning (207)  |  Result (677)  |  Science (3879)  |  Simple (406)  |  Single (353)  |  Study (653)  |  Time (1877)  |  Train (114)  |  Work (1351)

The mathematician is perfect only in so far as he is a perfect being, in so far as he perceives the beauty of truth; only then will his work be thorough, transparent, comprehensive, pure, clear, attractive and even elegant. All this is necessary to resemble Lagrange.
In Wilhelm Meister, Wanderjahre, Zweites Buch, in 'Sprüche in Prosa' Natur, VI, 950.
Science quotes on:  |  All (4108)  |  Attractive (23)  |  Beauty (299)  |  Being (1278)  |  Clear (100)  |  Comprehensive (29)  |  Elegant (36)  |  Far (154)  |  Mathematician (387)  |  Necessary (363)  |  Perceive (40)  |  Perfect (216)  |  Pure (291)  |  Resemble (63)  |  Thorough (40)  |  Transparent (16)  |  Truth (1057)  |  Will (2355)  |  Work (1351)

Thought-economy is most highly developed in mathematics, that science which has reached the highest formal development, and on which natural science so frequently calls for assistance. Strange as it may seem, the strength of mathematics lies in the avoidance of all unnecessary thoughts, in the utmost economy of thought-operations. The symbols of order, which we call numbers, form already a system of wonderful simplicity and economy. When in the multiplication of a number with several digits we employ the multiplication table and thus make use of previously accomplished results rather than to repeat them each time, when by the use of tables of logarithms we avoid new numerical calculations by replacing them by others long since performed, when we employ determinants instead of carrying through from the beginning the solution of a system of equations, when we decompose new integral expressions into others that are familiar,—we see in all this but a faint reflection of the intellectual activity of a Lagrange or Cauchy, who with the keen discernment of a military commander marshalls a whole troop of completed operations in the execution of a new one.
In Populär-wissenschafliche Vorlesungen (1903), 224-225.
Science quotes on:  |  Accomplishment (93)  |  Activity (210)  |  All (4108)  |  Already (222)  |  Assistance (20)  |  Avoid (116)  |  Avoidance (11)  |  Begin (260)  |  Beginning (305)  |  Calculation (127)  |  Call (769)  |  Carry (127)  |  Baron Augustin-Louis Cauchy (10)  |  Complete (204)  |  Completed (30)  |  Decompose (9)  |  Develop (268)  |  Development (422)  |  Digit (4)  |  Discernment (4)  |  Economy (55)  |  Employ (113)  |  Equation (132)  |  Execution (25)  |  Expression (175)  |  Faint (9)  |  Familiar (43)  |  Form (959)  |  Formal (33)  |  Frequently (21)  |  High (362)  |  Highly (16)  |  Instead (21)  |  Integral (26)  |  Intellectual (255)  |  Keen (10)  |  Lie (364)  |  Logarithm (12)  |  Long (790)  |  Marshal (4)  |  Mathematics (1328)  |  Military (40)  |  Most (1731)  |  Multiplication (43)  |  Multiplication Table (16)  |  Natural (796)  |  Natural Science (128)  |  Nature Of Mathematics (80)  |  New (1216)  |  Number (699)  |  Numerical (39)  |  Operation (213)  |  Operations (107)  |  Order (632)  |  Other (2236)  |  Perform (121)  |  Previously (11)  |  Reach (281)  |  Reflection (90)  |  Repeat (42)  |  Replace (31)  |  Result (677)  |  Science (3879)  |  See (1081)  |  Seem (145)  |  Several (32)  |  Simplicity (167)  |  Solution (267)  |  Strange (157)  |  Strength (126)  |  Symbol (93)  |  System (537)  |  Table (104)  |  Thought (953)  |  Through (849)  |  Time (1877)  |  Troop (5)  |  Unnecessary (23)  |  Use (766)  |  Utmost (12)  |  Whole (738)  |  Wonderful (149)

Most, if not all, of the great ideas of modern mathematics have had their origin in observation. Take, for instance, the arithmetical theory of forms, of which the foundation was laid in the diophantine theorems of Fermat, left without proof by their author, which resisted all efforts of the myriad-minded Euler to reduce to demonstration, and only yielded up their cause of being when turned over in the blow-pipe flame of Gauss’s transcendent genius; or the doctrine of double periodicity, which resulted from the observation of Jacobi of a purely analytical fact of transformation; or Legendre’s law of reciprocity; or Sturm’s theorem about the roots of equations, which, as he informed me with his own lips, stared him in the face in the midst of some mechanical investigations connected (if my memory serves me right) with the motion of compound pendulums; or Huyghen’s method of continued fractions, characterized by Lagrange as one of the principal discoveries of that great mathematician, and to which he appears to have been led by the construction of his Planetary Automaton; or the new algebra, speaking of which one of my predecessors (Mr. Spottiswoode) has said, not without just reason and authority, from this chair, “that it reaches out and indissolubly connects itself each year with fresh branches of mathematics, that the theory of equations has become almost new through it, algebraic geometry transfigured in its light, that the calculus of variations, molecular physics, and mechanics” (he might, if speaking at the present moment, go on to add the theory of elasticity and the development of the integral calculus) “have all felt its influence”.
In 'A Plea for the Mathematician', Nature, 1, 238 in Collected Mathematical Papers, Vol. 2, 655-56.
Science quotes on:  |   (2863)  |  Add (40)  |  Algebra (113)  |  All (4108)  |  Analysis (233)  |  Appear (118)  |  Arithmetical (11)  |  Author (167)  |  Authority (95)  |  Automaton (12)  |  Become (815)  |  Being (1278)  |  Blow (44)  |  Branch (150)  |  Calculus (65)  |  Cause (541)  |  Chair (24)  |  Characterize (20)  |  Compound (113)  |  Connect (125)  |  Construction (112)  |  Continue (165)  |  Demonstration (113)  |  Development (422)  |  Discovery (780)  |  Doctrine (75)  |  Double (15)  |  Effort (227)  |  Elasticity (8)  |  Equation (132)  |  Leonhard Euler (35)  |  Face (212)  |  Fact (1210)  |  Feel (367)  |  Pierre de Fermat (15)  |  Flame (40)  |  Form (959)  |  Foundation (171)  |  Fraction (13)  |  Fresh (67)  |  Carl Friedrich Gauss (77)  |  Genius (284)  |  Geometry (255)  |  Great (1574)  |  Christiaan Huygens (10)  |  Idea (843)  |  Influence (222)  |  Inform (47)  |  Instance (33)  |  Integral (26)  |  Integral Calculus (6)  |  Investigation (230)  |  Karl Jacobi (10)  |  Laid (7)  |  Law (894)  |  Lead (384)  |  Leave (130)  |  Adrien-Marie Legendre (3)  |  Light (607)  |  Lip (4)  |  Mathematician (387)  |  Mathematics (1328)  |  Mechanic (119)  |  Mechanical (140)  |  Mechanics (131)  |  Memory (134)  |  Method (505)  |  Midst (7)  |  Mind (1338)  |  Modern (385)  |  Modern Mathematics (50)  |  Molecular (7)  |  Moment (253)  |  Most (1731)  |  Motion (310)  |  Myriad (31)  |  Nature Of Mathematics (80)  |  New (1216)  |  Observation (555)  |  Origin (239)  |  Pendulum (17)  |  Periodicity (6)  |  Physic (517)  |  Physics (533)  |  Planetary (29)  |  Predecessor (29)  |  Present (619)  |  Principal (63)  |  Proof (287)  |  Purely (109)  |  Reach (281)  |  Reason (744)  |  Reciprocity (2)  |  Reduce (94)  |  Resist (15)  |  Result (677)  |  Right (452)  |  Root (120)  |  Say (984)  |  Serve (59)  |  Speak (232)  |  Speaking (119)  |  William Spottiswoode (3)  |  Star (427)  |  Stare (9)  |  Theorem (112)  |  Theory (970)  |  Through (849)  |  Transcendent (2)  |  Transfigure (2)  |  Transformation (69)  |  Turn (447)  |  Variation (90)  |  Year (933)  |  Yield (81)

The persons who have been employed on these problems of applying the properties of matter and the laws of motion to the explanation of the phenomena of the world, and who have brought to them the high and admirable qualities which such an office requires, have justly excited in a very eminent degree the admiration which mankind feels for great intellectual powers. Their names occupy a distinguished place in literary history; and probably there are no scientific reputations of the last century higher, and none more merited, than those earned by great mathematicians who have laboured with such wonderful success in unfolding the mechanism of the heavens; such for instance as D ’Alembert, Clairaut, Euler, Lagrange, Laplace.
In Astronomy and General Physics (1833), Bk. 3, chap. 4, 327.
Science quotes on:  |  Admirable (19)  |  Admiration (59)  |  Apply (160)  |  Bring (90)  |  Century (310)  |  Alexis Claude Clairaut (2)  |  Jean le Rond D’Alembert (11)  |  Degree (276)  |  Distinguish (160)  |  Distinguished (83)  |  Earn (7)  |  Eminent (17)  |  Employ (113)  |  Leonhard Euler (35)  |  Excited (8)  |  Explanation (234)  |  Feel (367)  |  Great (1574)  |  Heaven (258)  |  Heavens (125)  |  High (362)  |  History (673)  |  Instance (33)  |  Intellectual (255)  |  Justly (6)  |  Labour (98)  |  Pierre-Simon Laplace (62)  |  Last (426)  |  Law (894)  |  Law Of Motion (14)  |  Laws Of Motion (10)  |  Literary (13)  |  Mankind (339)  |  Mathematician (387)  |  Matter (798)  |  Mechanism (96)  |  Merit (50)  |  More (2559)  |  Motion (310)  |  Name (333)  |  Occupy (26)  |  Office (71)  |  Person (363)  |  Phenomenon (318)  |  Place (177)  |  Power (746)  |  Probably (49)  |  Problem (676)  |  Properties Of Matter (7)  |  Quality (135)  |  Reputation (33)  |  Require (219)  |  Scientific (941)  |  Success (302)  |  Unfold (12)  |  Unfolding (16)  |  Wonderful (149)  |  World (1774)

We pass with admiration along the great series of mathematicians, by whom the science of theoretical mechanics has been cultivated, from the time of Newton to our own. There is no group of men of science whose fame is higher or brighter. The great discoveries of Copernicus, Galileo, Newton, had fixed all eyes on those portions of human knowledge on which their successors employed their labors. The certainty belonging to this line of speculation seemed to elevate mathematicians above the students of other subjects; and the beauty of mathematical relations and the subtlety of intellect which may be shown in dealing with them, were fitted to win unbounded applause. The successors of Newton and the Bernoullis, as Euler, Clairaut, D’Alembert, Lagrange, Laplace, not to introduce living names, have been some of the most remarkable men of talent which the world has seen.
In History of the Inductive Sciences, Vol. 1, Bk. 4, chap. 6, sect. 6.
Science quotes on:  |  Admiration (59)  |  All (4108)  |  Applause (9)  |  Beauty (299)  |  Belong (162)  |  Belonging (37)  |  Jacob Bernoulli (6)  |  Bright (79)  |  Certainty (174)  |  Alexis Claude Clairaut (2)  |  Nicolaus Copernicus (48)  |  Cultivate (19)  |  Jean le Rond D’Alembert (11)  |  Deal (188)  |  Discovery (780)  |  Elevate (12)  |  Employ (113)  |  Leonhard Euler (35)  |  Eye (419)  |  Fame (50)  |  Fit (134)  |  Fix (25)  |  Galileo Galilei (122)  |  Great (1574)  |  Group (78)  |  High (362)  |  Human (1468)  |  Intellect (233)  |  Introduce (63)  |  Knowledge (1529)  |  Labor (107)  |  Pierre-Simon Laplace (62)  |  Line (91)  |  Live (628)  |  Living (491)  |  Mathematician (387)  |  Mathematics (1328)  |  Mechanic (119)  |  Mechanics (131)  |  Men Of Science (143)  |  Most (1731)  |  Name (333)  |  Sir Isaac Newton (333)  |  Other (2236)  |  Pass (238)  |  Portion (84)  |  Relation (157)  |  Remarkable (48)  |  Science (3879)  |  See (1081)  |  Seem (145)  |  Series (149)  |  Show (346)  |  Speculation (126)  |  Student (300)  |  Subject (521)  |  Subtlety (19)  |  Successor (14)  |  Talent (94)  |  Theoretical (22)  |  Time (1877)  |  Unbounded (5)  |  Win (52)  |  World (1774)

This [the fact that the pursuit of mathematics brings into harmonious action all the faculties of the human mind] accounts for the extraordinary longevity of all the greatest masters of the Analytic art, the Dii Majores of the mathematical Pantheon. Leibnitz lived to the age of 70; Euler to 76; Lagrange to 77; Laplace to 78; Gauss to 78; Plato, the supposed inventor of the conic sections, who made mathematics his study and delight, who called them the handles or aids to philosophy, the medicine of the soul, and is said never to have let a day go by without inventing some new theorems, lived to 82; Newton, the crown and glory of his race, to 85; Archimedes, the nearest akin, probably, to Newton in genius, was 75, and might have lived on to be 100, for aught we can guess to the contrary, when he was slain by the impatient and ill mannered sergeant, sent to bring him before the Roman general, in the full vigour of his faculties, and in the very act of working out a problem; Pythagoras, in whose school, I believe, the word mathematician (used, however, in a somewhat wider than its present sense) originated, the second founder of geometry, the inventor of the matchless theorem which goes by his name, the pre-cognizer of the undoubtedly mis-called Copernican theory, the discoverer of the regular solids and the musical canon who stands at the very apex of this pyramid of fame, (if we may credit the tradition) after spending 22 years studying in Egypt, and 12 in Babylon, opened school when 56 or 57 years old in Magna Græcia, married a young wife when past 60, and died, carrying on his work with energy unspent to the last, at the age of 99. The mathematician lives long and lives young; the wings of his soul do not early drop off, nor do its pores become clogged with the earthy particles blown from the dusty highways of vulgar life.
In Presidential Address to the British Association, Collected Mathematical Papers, Vol. 2 (1908), 658.
Science quotes on:  |  Account (192)  |  Act (272)  |  Action (327)  |  Age (499)  |  Aid (97)  |  Akin (5)  |  All (4108)  |  Analytic (10)  |  Apex (6)  |  Archimedes (55)  |  Art (657)  |  Aught (6)  |  Babylon (7)  |  Become (815)  |  Belief (578)  |  Blow (44)  |  Bring (90)  |  Call (769)  |  Called (9)  |  Canon (3)  |  Carry (127)  |  Clog (5)  |  Conic Section (8)  |  Contrary (141)  |  Copernican Theory (3)  |  Credit (20)  |  Crown (38)  |  Delight (108)  |  Die (86)  |  Discoverer (42)  |  Do (1908)  |  Drop (76)  |  Dusty (8)  |  Early (185)  |  Egypt (29)  |  Energy (344)  |  Leonhard Euler (35)  |  Extraordinary (79)  |  Fact (1210)  |  Faculty (72)  |  Fame (50)  |  Founder (26)  |  Full (66)  |  Carl Friedrich Gauss (77)  |  General (511)  |  Genius (284)  |  Geometry (255)  |  Glory (58)  |  Great (1574)  |  Greatest (328)  |  Guess (61)  |  Handle (28)  |  Harmonious (18)  |  Highway (13)  |  Human (1468)  |  Human Mind (128)  |  Impatient (3)  |  Invent (51)  |  Inventor (71)  |  Pierre-Simon Laplace (62)  |  Last (426)  |  Gottfried Wilhelm Leibniz (49)  |  Let (61)  |  Life (1795)  |  Live (628)  |  Long (790)  |  Longevity (6)  |  Manner (58)  |  Marry (8)  |  Master (178)  |  Mathematician (387)  |  Mathematics (1328)  |  Medicine (378)  |  Mind (1338)  |  Musical (10)  |  Name (333)  |  Never (1087)  |  New (1216)  |  Sir Isaac Newton (333)  |  Old (481)  |  Open (274)  |  Originate (36)  |  Pantheon (2)  |  Particle (194)  |  Past (337)  |  Philosophy (380)  |  Plato (76)  |  Pore (7)  |  Present (619)  |  Probably (49)  |  Problem (676)  |  Pursuit (121)  |  Pyramid (9)  |  Pythagoras (38)  |  Race (268)  |  Regular (46)  |  Roman (36)  |  Say (984)  |  School (219)  |  Second (62)  |  Send (22)  |  Sense (770)  |  Sergeant (2)  |  Solid (116)  |  Soul (226)  |  Spend (95)  |  Spending (24)  |  Stand (274)  |  Study (653)  |  Studying (70)  |  Suppose (156)  |  Theorem (112)  |  Theory (970)  |  Tradition (69)  |  Undoubtedly (3)  |  Vigour (18)  |  Vulgar (33)  |  Wide (96)  |  Wife (41)  |  Wing (75)  |  Word (619)  |  Work (1351)  |  Year (933)  |  Young (227)

Every mathematical book that is worth reading must be read “backwards and forwards”, if I may use the expression. I would modify Lagrange’s advice a little and say, “Go on, but often return to strengthen your faith.” When you come on a hard or dreary passage, pass it over; and come back to it after you have seen its importance or found the need for it further on.
In Algebra, Part 2 (1889), Preface, viii.
Science quotes on:  |   (2863)  |  Advice (55)  |  Back (390)  |  Backwards (17)  |  Book (392)  |  Dreary (5)  |  Expression (175)  |  Faith (203)  |  Far (154)  |  Find (998)  |  Forward (102)  |  Hard (243)  |  Importance (286)  |  Little (707)  |  Mathematics (1328)  |  Modify (15)  |  Must (1526)  |  Need (290)  |  Often (106)  |  Pass (238)  |  Passage (50)  |  Read (287)  |  Reading (133)  |  Return (124)  |  Say (984)  |  See (1081)  |  Strengthen (23)  |  Study And Research In Mathematics (61)  |  Use (766)  |  Worth (169)

To emphasize this opinion that mathematicians would be unwise to accept practical issues as the sole guide or the chief guide in the current of their investigations, ... let me take one more instance, by choosing a subject in which the purely mathematical interest is deemed supreme, the theory of functions of a complex variable. That at least is a theory in pure mathematics, initiated in that region, and developed in that region; it is built up in scores of papers, and its plan certainly has not been, and is not now, dominated or guided by considerations of applicability to natural phenomena. Yet what has turned out to be its relation to practical issues? The investigations of Lagrange and others upon the construction of maps appear as a portion of the general property of conformal representation; which is merely the general geometrical method of regarding functional relations in that theory. Again, the interesting and important investigations upon discontinuous two-dimensional fluid motion in hydrodynamics, made in the last twenty years, can all be, and now are all, I believe, deduced from similar considerations by interpreting functional relations between complex variables. In the dynamics of a rotating heavy body, the only substantial extension of our knowledge since the time of Lagrange has accrued from associating the general properties of functions with the discussion of the equations of motion. Further, under the title of conjugate functions, the theory has been applied to various questions in electrostatics, particularly in connection with condensers and electrometers. And, lastly, in the domain of physical astronomy, some of the most conspicuous advances made in the last few years have been achieved by introducing into the discussion the ideas, the principles, the methods, and the results of the theory of functions. … the refined and extremely difficult work of Poincare and others in physical astronomy has been possible only by the use of the most elaborate developments of some purely mathematical subjects, developments which were made without a thought of such applications.
In Presidential Address British Association for the Advancement of Science, Section A, (1897), Nature, 56, 377.
Science quotes on:  |  Accept (191)  |  Accrue (3)  |  Achieve (66)  |  Advance (280)  |  All (4108)  |  Appear (118)  |  Applicability (6)  |  Application (242)  |  Applied (177)  |  Apply (160)  |  Associate (25)  |  Astronomy (229)  |  Belief (578)  |  Body (537)  |  Build (204)  |  Certainly (185)  |  Chief (97)  |  Choose (112)  |  Complex (188)  |  Condenser (4)  |  Connection (162)  |  Consideration (139)  |  Conspicuous (12)  |  Construction (112)  |  Current (118)  |  Deduce (25)  |  Deem (6)  |  Develop (268)  |  Development (422)  |  Difficult (246)  |  Discontinuous (6)  |  Discussion (72)  |  Domain (69)  |  Dominate (20)  |  Dynamics (9)  |  Elaborate (28)  |  Electrostatic (7)  |  Electrostatics (6)  |  Emphasize (23)  |  Equation (132)  |  Extension (59)  |  Extremely (16)  |  Far (154)  |  Fluid (51)  |  Fluid Motion (2)  |  Function (228)  |  Functional (10)  |  General (511)  |  Geometrical (10)  |  Guide (97)  |  Heavy (23)  |  Hydrodynamics (5)  |  Idea (843)  |  Important (209)  |  Initiate (13)  |  Instance (33)  |  Interest (386)  |  Interesting (153)  |  Interpret (19)  |  Interpreting (5)  |  Introduce (63)  |  Investigation (230)  |  Issue (42)  |  Knowledge (1529)  |  Last (426)  |  Least (75)  |  Let (61)  |  Map (44)  |  Mathematician (387)  |  Mathematics (1328)  |  Merely (316)  |  Method (505)  |  Methods (204)  |  More (2559)  |  Most (1731)  |  Motion (310)  |  Natural (796)  |  Opinion (281)  |  Other (2236)  |  Paper (182)  |  Particularly (21)  |  Phenomenon (318)  |  Physical (508)  |  Plan (117)  |  Henri Poincaré (96)  |  Portion (84)  |  Possible (552)  |  Practical (200)  |  Principle (507)  |  Property (168)  |  Pure (291)  |  Pure Mathematics (67)  |  Purely (109)  |  Question (621)  |  Refine (8)  |  Regard (305)  |  Region (36)  |  Relation (157)  |  Representation (53)  |  Result (677)  |  Rotate (8)  |  Score (8)  |  Similar (36)  |  Sole (49)  |  Study And Research In Mathematics (61)  |  Subject (521)  |  Substantial (24)  |  Supreme (71)  |  Theory (970)  |  Thought (953)  |  Time (1877)  |  Title (18)  |  Turn (447)  |  Turned Out (4)  |  Two (937)  |  Unwise (4)  |  Use (766)  |  Variable (34)  |  Various (200)  |  Work (1351)  |  Year (933)

Generality of points of view and of methods, precision and elegance in presentation, have become, since Lagrange, the common property of all who would lay claim to the rank of scientific mathematicians. And, even if this generality leads at times to abstruseness at the expense of intuition and applicability, so that general theorems are formulated which fail to apply to a single special case, if furthermore precision at times degenerates into a studied brevity which makes it more difficult to read an article than it was to write it; if, finally, elegance of form has well-nigh become in our day the criterion of the worth or worthlessness of a proposition,—yet are these conditions of the highest importance to a wholesome development, in that they keep the scientific material within the limits which are necessary both intrinsically and extrinsically if mathematics is not to spend itself in trivialities or smother in profusion.
In Die Entwickdung der Mathematik in den letzten Jahrhunderten (1884), 14-15.
Science quotes on:  |  Abstruse (10)  |  All (4108)  |  Applicable (31)  |  Apply (160)  |  Article (22)  |  Become (815)  |  Both (493)  |  Brevity (8)  |  Claim (146)  |  Common (436)  |  Condition (356)  |  Criterion (27)  |  Degenerate (14)  |  Development (422)  |  Difficult (246)  |  Elegance (37)  |  Expense (16)  |  Fail (185)  |  Form (959)  |  Formulate (15)  |  General (511)  |  Generality (45)  |  Importance (286)  |  Intrinsic (18)  |  Intuition (75)  |  Lead (384)  |  Limit (280)  |  Material (353)  |  Mathematician (387)  |  Mathematics (1328)  |  Method (505)  |  Methods (204)  |  Modern Mathematics (50)  |  More (2559)  |  Necessary (363)  |  Point (580)  |  Point Of View (80)  |  Precision (68)  |  Presentation (23)  |  Profusion (3)  |  Property (168)  |  Proposition (123)  |  Rank (67)  |  Read (287)  |  Scientific (941)  |  Single (353)  |  Smother (3)  |  Special (184)  |  Special Case (9)  |  Spend (95)  |  Study (653)  |  Theorem (112)  |  Time (1877)  |  Triviality (2)  |  View (488)  |  Wholesome (12)  |  Worth (169)  |  Worthless (21)  |  Write (230)

The love of mathematics is daily on the increase, not only with us but in the army. The result of this was unmistakably apparent in our last campaigns. Bonaparte himself has a mathematical head, and though all who study this science may not become geometricians like Laplace or Lagrange, or heroes like Bonaparte, there is yet left an influence upon the mind which enables them to accomplish more than they could possibly have achieved without this training.
In Letter (26 Jan 1798) to Von Zach. As quoted in translation in Karl Bruhns (ed.), Jane Lassell (trans.) and Caroline Lassell (trans.), Life of Alexander von Humboldt (1872), Vol. 1, 232. [Webmaster assigns this quote to Jérôme Lalande as an informed guess for the following reasons. The cited text gives only the last names, Lalande and von Zach, but it does also give a source footnote to a Allgemeine geographische Ephemeriden, 1, 340. The journal editor, Franz Xaver von Zach, was a Hungarian astronomer. Jérôme Lalande was a French astronomer, living at the same time, who called himself Jérôme Le Français de la Lande. Their names are seen referred to together in the same journal, Vol. 6, 360.]
Science quotes on:  |  Accomplishment (93)  |  Achieve (66)  |  All (4108)  |  Apparent (84)  |  Army (33)  |  Become (815)  |  Emperor Napoléon Bonaparte (19)  |  Campaign (6)  |  Daily (87)  |  Enable (119)  |  Estimates of Mathematics (30)  |  Geometer (24)  |  Head (81)  |  Hero (42)  |  Himself (461)  |  Increase (210)  |  Influence (222)  |  Pierre-Simon Laplace (62)  |  Last (426)  |  Leave (130)  |  Love (309)  |  Mathematics (1328)  |  Mind (1338)  |  More (2559)  |  Possibly (111)  |  Result (677)  |  Science (3879)  |  Study (653)  |  Training (80)  |  Unmistakable (6)

Who has studied the works of such men as Euler, Lagrange, Cauchy, Riemann, Sophus Lie, and Weierstrass, can doubt that a great mathematician is a great artist? The faculties possessed by such men, varying greatly in kind and degree with the individual, are analogous with those requisite for constructive art. Not every mathematician possesses in a specially high degree that critical faculty which finds its employment in the perfection of form, in conformity with the ideal of logical completeness; but every great mathematician possesses the rarer faculty of constructive imagination.
In Presidential Address British Association for the Advancement of Science, Sheffield, Section A, Nature (1 Sep 1910), 84, 290.
Science quotes on:  |  Analogous (5)  |  Art (657)  |  Artist (90)  |  Baron Augustin-Louis Cauchy (10)  |  Completeness (19)  |  Conformity (14)  |  Constructive (14)  |  Critical (66)  |  Degree (276)  |  Doubt (304)  |  Employment (32)  |  Leonhard Euler (35)  |  Faculty (72)  |  Find (998)  |  Form (959)  |  Great (1574)  |  High (362)  |  Ideal (99)  |  Imagination (328)  |  Individual (404)  |  Kind (557)  |  Lie (364)  |  Sophus Lie (6)  |  Logical (55)  |  Mathematician (387)  |  Perfection (129)  |  Possess (156)  |  Rare (89)  |  Requisite (11)  |  Bernhard Riemann (7)  |  Specially (3)  |  Study (653)  |  Vary (27)  |  Karl Weierstrass (9)  |  Work (1351)

In general the position as regards all such new calculi is this That one cannot accomplish by them anything that could not be accomplished without them. However, the advantage is, that, provided such a calculus corresponds to the inmost nature of frequent needs, anyone who masters it thoroughly is able—without the unconscious inspiration of genius which no one can command—to solve the respective problems, yea, to solve them mechanically in complicated cases in which, without such aid, even genius becomes powerless. Such is the case with the invention of general algebra, with the differential calculus, and in a more limited region with Lagrange’s calculus of variations, with my calculus of congruences, and with Möbius’s calculus. Such conceptions unite, as it were, into an organic whole countless problems which otherwise would remain isolated and require for their separate solution more or less application of inventive genius.
Letter (15 May 1843) to Schumacher, collected in Carl Friedrich Gauss Werke (1866), Vol. 8, 298, as translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath's Quotation-book (1914), 197-198. From the original German, “Überhaupt verhält es sich mit allen solchen neuen Calculs so, dass man durch sie nichts leisten kann, was nicht auch ohne sie zu leisten wäre; der Vortheil ist aber der, dass, wenn ein solcher Calcul dem innersten Wesen vielfach vorkommender Bedürfnisse correspondirt, jeder, der sich ihn ganz angeeignet hat, auch ohne die gleichsam unbewussten Inspirationen des Genies, die niemand erzwingen kann, die dahin gehörigen Aufgaben lösen, ja selbst in so verwickelten Fällen gleichsam mechanisch lösen kann, wo ohne eine solche Hülfe auch das Genie ohnmächtig wird. So ist es mit der Erfindung der Buchstabenrechnung überhaupt; so mit der Differentialrechnung gewesen; so ist es auch (wenn auch in partielleren Sphären) mit Lagranges Variationsrechnung, mit meiner Congruenzenrechnung und mit Möbius' Calcul. Es werden durch solche Conceptionen unzählige Aufgaben, die sonst vereinzelt stehen, und jedesmal neue Efforts (kleinere oder grössere) des Erfindungsgeistes erfordern, gleichsam zu einem organischen Reiche.”
Science quotes on:  |   (2863)  |  Accomplishment (93)  |  Advantage (134)  |  Aid (97)  |  Algebra (113)  |  All (4108)  |  Application (242)  |  Become (815)  |  Calculus (65)  |  Command (58)  |  Complicated (115)  |  Conception (154)  |  Congruence (3)  |  Countless (36)  |  Differential Calculus (10)  |  Frequent (23)  |  General (511)  |  Genius (284)  |  Inmost (2)  |  Inspiration (75)  |  Invention (369)  |  Inventive (8)  |  Isolate (22)  |  Limit (280)  |  Limited (101)  |  Master (178)  |  Mathematics As A Language (20)  |  Mechanical (140)  |  August Möbius (2)  |  More (2559)  |  More Or Less (68)  |  Nature (1926)  |  Need (290)  |  New (1216)  |  Organic (158)  |  Position (77)  |  Powerless (6)  |  Problem (676)  |  Regard (305)  |  Region (36)  |  Remain (349)  |  Require (219)  |  Respective (2)  |  Separate (143)  |  Solution (267)  |  Solve (130)  |  Thorough (40)  |  Thoroughly (67)  |  Unconscious (22)  |  Unite (42)  |  Variation (90)  |  Whole (738)


See also:
  • 25 Jan - short biography, births, deaths and events on date of Lagrange's birth.

Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton



who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.