Celebrating 19 Years on the Web
TODAY IN SCIENCE HISTORY ®
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “The Superfund legislation... may prove to be as far-reaching and important as any accomplishment of my administration. The reduction of the threat to America's health and safety from thousands of toxic-waste sites will continue to be an urgent…issue …”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index S > Category: Study And Research In Mathematics

Study And Research In Mathematics Quotes (61 quotes)

A great department of thought must have its own inner life, however transcendent may be the importance of its relations to the outside. No department of science, least of all one requiring so high a degree of mental concentration as Mathematics, can be developed entirely, or even mainly, with a view to applications outside its own range. The increased complexity and specialisation of all branches of knowledge makes it true in the present, however it may have been in former times, that important advances in such a department as Mathematics can be expected only from men who are interested in the subject for its own sake, and who, whilst keeping an open mind for suggestions from outside, allow their thought to range freely in those lines of advance which are indicated by the present state of their subject, untrammelled by any preoccupation as to applications to other departments of science. Even with a view to applications, if Mathematics is to be adequately equipped for the purpose of coping with the intricate problems which will be presented to it in the future by Physics, Chemistry and other branches of physical science, many of these problems probably of a character which we cannot at present forecast, it is essential that Mathematics should be allowed to develop freely on its own lines.
In Presidential Address British Association for the Advancement of Science, Sheffield, Section A, Nature (1 Sep 1910), 84, 286.
Science quotes on:  |  Adequate (46)  |  Advance (280)  |  All (4108)  |  Allow (45)  |  Application (242)  |  Branch (150)  |  Character (243)  |  Chemistry (353)  |  Complexity (111)  |  Concentration (29)  |  Cope (6)  |  Degree (276)  |  Department (92)  |  Develop (268)  |  Entirely (34)  |  Equip (5)  |  Equipped (17)  |  Essential (199)  |  Expect (200)  |  Forecast (13)  |  Former (137)  |  Freely (13)  |  Future (429)  |  Great (1574)  |  High (362)  |  Importance (286)  |  Important (209)  |  Increase (210)  |  Indicate (61)  |  Inner (71)  |  Interest (386)  |  Intricate (29)  |  Knowledge (1529)  |  Least (75)  |  Life (1795)  |  Mainly (9)  |  Mathematics (1328)  |  Mental (177)  |  Mind (1338)  |  Must (1526)  |  Open (274)  |  Other (2236)  |  Outside (141)  |  Physic (517)  |  Physical (508)  |  Physical Science (101)  |  Physics (533)  |  Preoccupation (7)  |  Present (619)  |  Probably (49)  |  Problem (676)  |  Purpose (317)  |  Range (99)  |  Relation (157)  |  Require (219)  |  Sake (58)  |  Science (3879)  |  Specialize (3)  |  State (491)  |  Subject (521)  |  Suggestion (46)  |  Thought (953)  |  Time (1877)  |  Transcendent (2)  |  True (212)  |  View (488)  |  Will (2355)

A mathematical problem should be difficult in order to entice us, yet not completely inaccessible, lest it mock at our efforts. It should be to us a guide post on the mazy paths to hidden truths, and ultimately a reminder of our pleasure in the successful solution.
In Mathematical Problems', Bulletin American Mathematical Society, 8, 438.
Science quotes on:  |  Completely (135)  |  Difficult (246)  |  Effort (227)  |  Guide (97)  |  Hide (69)  |  Inaccessible (18)  |  Lest (3)  |  Mathematics (1328)  |  Mock (7)  |  Order (632)  |  Path (144)  |  Pleasure (178)  |  Post (6)  |  Problem (676)  |  Reminder (13)  |  Solution (267)  |  Successful (123)  |  Truth (1057)  |  Ultimately (55)

A student who wishes now-a-days to study geometry by dividing it sharply from analysis, without taking account of the progress which the latter has made and is making, that student no matter how great his genius, will never be a whole geometer. He will not possess those powerful instruments of research which modern analysis puts into the hands of modern geometry. He will remain ignorant of many geometrical results which are to be found, perhaps implicitly, in the writings of the analyst. And not only will he be unable to use them in his own researches, but he will probably toil to discover them himself, and, as happens very often, he will publish them as new, when really he has only rediscovered them.
From 'On Some Recent Tendencies in Geometrical Investigations', Rivista di Matematica (1891), 43. In Bulletin American Mathematical Society (1904), 443.
Science quotes on:  |  Account (192)  |  Analysis (233)  |  Discover (553)  |  Divide (75)  |  Genius (284)  |  Geometer (24)  |  Geometry (255)  |  Great (1574)  |  Happen (274)  |  Himself (461)  |  Ignorant (90)  |  Implicit (12)  |  Instrument (144)  |  Making (300)  |  Matter (798)  |  Modern (385)  |  Never (1087)  |  New (1216)  |  Possess (156)  |  Powerful (139)  |  Progress (465)  |  Publish (36)  |  Remain (349)  |  Research (664)  |  Result (677)  |  Student (300)  |  Study (653)  |  Toil (25)  |  Use (766)  |  Whole (738)  |  Will (2355)  |  Writing (189)

Abstruse mathematical researches … are … often abused for having no obvious physical application. The fact is that the most useful parts of science have been investigated for the sake of truth, and not for their usefulness. A new branch of mathematics, which has sprung up in the last twenty years, was denounced by the Astronomer Royal before the University of Cambridge as doomed to be forgotten, on account of its uselessness. Now it turns out that the reason why we cannot go further in our investigations of molecular action is that we do not know enough of this branch of mathematics.
In 'Conditions of Mental Development', Lectures and Essays (1901), Vol. 1, 115.
Science quotes on:  |  Abstruse (10)  |  Abuse (22)  |  Account (192)  |  Action (327)  |  Application (242)  |  Astronomer (93)  |  Branch (150)  |  Cambridge (16)  |  Denounce (6)  |  Do (1908)  |  Doom (32)  |  Enough (340)  |  Fact (1210)  |  Far (154)  |  Forget (115)  |  Forgotten (53)  |  Investigate (103)  |  Investigation (230)  |  Know (1518)  |  Last (426)  |  Mathematics (1328)  |  Molecular (7)  |  Most (1731)  |  New (1216)  |  Obvious (126)  |  Often (106)  |  Part (222)  |  Physical (508)  |  Reason (744)  |  Research (664)  |  Royal (57)  |  Sake (58)  |  Science (3879)  |  Spring (133)  |  Truth (1057)  |  Turn (447)  |  Turn Out (9)  |  University (121)  |  Useful (250)  |  Usefulness (86)  |  Uselessness (22)  |  Why (491)  |  Year (933)

Although with the majority of those who study and practice in these capacities [engineers, builders, surveyors, geographers, navigators, hydrographers, astronomers], secondhand acquirements, trite formulas, and appropriate tables are sufficient for ordinary purposes, yet these trite formulas and familiar rules were originally or gradually deduced from the profound investigations of the most gifted minds, from the dawn of science to the present day. … The further developments of the science, with its possible applications to larger purposes of human utility and grander theoretical generalizations, is an achievement reserved for a few of the choicest spirits, touched from time to time by Heaven to these highest issues. The intellectual world is filled with latent and undiscovered truth as the material world is filled with latent electricity.
In Orations and Speeches, Vol. 3 (1870), 513.
Science quotes on:  |  Achievement (179)  |  Acquirement (3)  |  Application (242)  |  Appropriate (61)  |  Astronomer (93)  |  Builder (12)  |  Capacity (100)  |  Dawn (31)  |  Deduce (25)  |  Development (422)  |  Electricity (159)  |  Engineer (121)  |  Familiar (43)  |  Far (154)  |  Fill (61)  |  Formula (98)  |  Generalization (57)  |  Geographer (6)  |  Gift (104)  |  Gifted (23)  |  Gradually (102)  |  Grand (27)  |  Heaven (258)  |  High (362)  |  Human (1468)  |  Hydrographer (3)  |  Intellectual (255)  |  Investigation (230)  |  Issue (42)  |  Large (394)  |  Latent (12)  |  Majority (66)  |  Material (353)  |  Material World (8)  |  Mind (1338)  |  Most (1731)  |  Navigator (8)  |  Ordinary (160)  |  Originally (6)  |  Possible (552)  |  Practice (204)  |  Present (619)  |  Present Day (5)  |  Profound (104)  |  Purpose (317)  |  Reserve (24)  |  Rule (294)  |  Science (3879)  |  Secondhand (6)  |  Spirit (265)  |  Study (653)  |  Sufficient (128)  |  Surveyor (5)  |  Table (104)  |  Theoretical (22)  |  Time (1877)  |  Touch (141)  |  Trite (4)  |  Truth (1057)  |  Undiscovered (15)  |  Utility (49)  |  World (1774)

An old French geometer used to say that a mathematical theory was never to be considered complete till you had made it so clear that you could explain it to the first man you met in the street.
In Nature (1873), 8, 458.
Science quotes on:  |  Clear (100)  |  Complete (204)  |  Consider (416)  |  Explain (322)  |  First (1283)  |  French (20)  |  Geometer (24)  |  Man (2251)  |  Mathematics (1328)  |  Meet (31)  |  Never (1087)  |  Old (481)  |  Say (984)  |  Street (23)  |  Theory (970)

As in the domains of practical life so likewise in science there has come about a division of labor. The individual can no longer control the whole field of mathematics: it is only possible for him to master separate parts of it in such a manner as to enable him to extend the boundaries of knowledge by creative research.
In Die reine Mathematik in den Jahren 1884-99, 10. As quoted, cited and translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-Book (1914), 94.
Science quotes on:  |  Boundary (51)  |  Control (167)  |  Creative (137)  |  Division (65)  |  Domain (69)  |  Enable (119)  |  Extend (128)  |  Field (364)  |  Individual (404)  |  Knowledge (1529)  |  Labor (107)  |  Life (1795)  |  Manner (58)  |  Master (178)  |  Mathematics (1328)  |  Part (222)  |  Possible (552)  |  Practical (200)  |  Research (664)  |  Science (3879)  |  Separate (143)  |  Whole (738)

As long as a branch of science offers an abundance of problems, so long it is alive; a lack of problems foreshadows extinction or the cessation of independent development.
In 'Mathematical Problems', Bulletin American Mathematical Society, 8, 438.
Science quotes on:  |  Abundance (25)  |  Alive (90)  |  Branch (150)  |  Cessation (12)  |  Development (422)  |  Extinction (74)  |  Foreshadow (5)  |  Independent (67)  |  Lack (119)  |  Long (790)  |  Offer (141)  |  Problem (676)  |  Science (3879)

During a conversation with the writer in the last weeks of his life, Sylvester remarked as curious that notwithstanding he had always considered the bent of his mind to be rather analytical than geometrical, he found in nearly every case that the solution of an analytical problem turned upon some quite simple geometrical notion, and that he was never satisfied until he could present the argument in geometrical language.
In Proceedings London Royal Society, 63, 17.
Science quotes on:  |  Analysis (233)  |  Argument (138)  |  Consider (416)  |  Conversation (43)  |  Curious (91)  |  Geometry (255)  |  Language (293)  |  Last (426)  |  Life (1795)  |  Mind (1338)  |  Nearly (137)  |  Never (1087)  |  Notion (113)  |  Present (619)  |  Problem (676)  |  Remark (28)  |  Satisfied (23)  |  Simple (406)  |  Solution (267)  |  James Joseph Sylvester (58)  |  Turn (447)  |  Week (70)  |  Writer (86)

Euclid and Archimedes are allowed to be knowing, and to have demonstrated what they say: and yet whosoever shall read over their writings without perceiving the connection of their proofs, and seeing what they show, though he may understand all their words, yet he is not the more knowing. He may believe, indeed, but does not know what they say, and so is not advanced one jot in mathematical knowledge by all his reading of those approved mathematicians.
In Conduct of the Understanding, sect. 24.
Science quotes on:  |  Advance (280)  |  All (4108)  |  Allow (45)  |  Approve (3)  |  Archimedes (55)  |  Belief (578)  |  Connection (162)  |  Demonstrate (76)  |  Euclid (54)  |  Indeed (324)  |  Jot (3)  |  Know (1518)  |  Knowing (137)  |  Knowledge (1529)  |  Mathematician (387)  |  Mathematics (1328)  |  More (2559)  |  Perceive (40)  |  Proof (287)  |  Read (287)  |  Reading (133)  |  Say (984)  |  See (1081)  |  Seeing (142)  |  Show (346)  |  Understand (606)  |  Word (619)  |  Writing (189)

Every mathematical book that is worth reading must be read “backwards and forwards”, if I may use the expression. I would modify Lagrange’s advice a little and say, “Go on, but often return to strengthen your faith.” When you come on a hard or dreary passage, pass it over; and come back to it after you have seen its importance or found the need for it further on.
In Algebra, Part 2 (1889), Preface, viii.
Science quotes on:  |   (2863)  |  Advice (55)  |  Back (390)  |  Backwards (17)  |  Book (392)  |  Dreary (5)  |  Expression (175)  |  Faith (203)  |  Far (154)  |  Find (998)  |  Forward (102)  |  Hard (243)  |  Importance (286)  |  Count Joseph-Louis de Lagrange (26)  |  Little (707)  |  Mathematics (1328)  |  Modify (15)  |  Must (1526)  |  Need (290)  |  Often (106)  |  Pass (238)  |  Passage (50)  |  Read (287)  |  Reading (133)  |  Return (124)  |  Say (984)  |  See (1081)  |  Strengthen (23)  |  Use (766)  |  Worth (169)

Geometric writings are not rare in which one would seek in vain for an idea at all novel, for a result which sooner or later might be of service, for anything in fact which might be destined to survive in the science; and one finds instead treatises on trivial problems or investigations on special forms which have absolutely no use, no importance, which have their origin not in the science itself but in the caprice of the author; or one finds applications of known methods which have already been made thousands of times; or generalizations from known results which are so easily made that the knowledge of the latter suffices to give at once the former. Now such work is not merely useless; it is actually harmful because it produces a real incumbrance in the science and an embarrassment for the more serious investigators; and because often it crowds out certain lines of thought which might well have deserved to be studied.
From 'On Some Recent Tendencies in Geometric Investigations', Rivista di Matematica (1891), 43. In Bulletin American Mathematical Society (1904), 443.
Science quotes on:  |  All (4108)  |  Already (222)  |  Application (242)  |  Author (167)  |  Caprice (9)  |  Certain (550)  |  Deserve (65)  |  Destined (42)  |  Embarrassment (5)  |  Encumbrance (5)  |  Fact (1210)  |  Find (998)  |  Form (959)  |  Former (137)  |  Generalization (57)  |  Geometry (255)  |  Harmful (12)  |  Idea (843)  |  Importance (286)  |  In Vain (9)  |  Investigation (230)  |  Investigator (67)  |  Knowledge (1529)  |  Known (454)  |  Latter (21)  |  Merely (316)  |  Method (505)  |  Methods (204)  |  More (2559)  |  Novel (32)  |  Origin (239)  |  Problem (676)  |  Rare (89)  |  Result (677)  |  Science (3879)  |  Seek (213)  |  Serious (91)  |  Service (110)  |  Sooner Or Later (6)  |  Special (184)  |  Study (653)  |  Suffice (7)  |  Survive (79)  |  Thought (953)  |  Thousand (331)  |  Time (1877)  |  Treatise (44)  |  Trivial (57)  |  Use (766)  |  Useless (33)  |  Vain (83)  |  Work (1351)  |  Writing (189)

If we view mathematical speculations with reference to their use, it appears that they should be divided into two classes. To the first belong those which furnish some marked advantage either to common life or to some art, and the value of such is usually determined by the magnitude of this advantage. The other class embraces those speculations which, though offering no direct advantage, are nevertheless valuable in that they extend the boundaries of analysis and increase our resources and skill. Now since many investigations, from which great advantage may be expected, must be abandoned solely because of the imperfection of analysis, no small value should be assigned to those speculations which promise to enlarge the field of anaylsis.
In Novi Comm. Petr., Vol. 4, Preface.
Science quotes on:  |  Abandon (68)  |  Advantage (134)  |  Analysis (233)  |  Appear (118)  |  Art (657)  |  Assign (13)  |  Belong (162)  |  Boundary (51)  |  Class (164)  |  Common (436)  |  Determine (144)  |  Direct (225)  |  Divide (75)  |  Divided (50)  |  Embrace (46)  |  Enlarge (35)  |  Expect (200)  |  Extend (128)  |  Field (364)  |  First (1283)  |  Furnish (96)  |  Great (1574)  |  Imperfection (31)  |  Increase (210)  |  Investigation (230)  |  Life (1795)  |  Magnitude (83)  |  Mark (43)  |  Marked (55)  |  Mathematics (1328)  |  Must (1526)  |  Nevertheless (90)  |  Offer (141)  |  Other (2236)  |  Promise (67)  |  Reference (33)  |  Resource (63)  |  Skill (109)  |  Small (477)  |  Solely (9)  |  Speculation (126)  |  Two (937)  |  Use (766)  |  Usually (176)  |  Value (365)  |  View (488)

In geometry, as in most sciences, it is very rare that an isolated proposition is of immediate utility. But the theories most powerful in practice are formed of propositions which curiosity alone brought to light, and which long remained useless without its being able to divine in what way they should one day cease to be so. In this sense it may be said, that in real science, no theory, no research, is in effect useless.
In 'Geometry', A Philosophical Dictionary, (1881), Vol. l, 374.
Science quotes on:  |  Alone (311)  |  Being (1278)  |  Bring (90)  |  Cease (79)  |  Curiosity (128)  |  Divine (112)  |  Effect (393)  |  Form (959)  |  Geometry (255)  |  Immediate (95)  |  Isolate (22)  |  Light (607)  |  Long (790)  |  Most (1731)  |  Powerful (139)  |  Practice (204)  |  Proposition (123)  |  Rare (89)  |  Real (149)  |  Remain (349)  |  Research (664)  |  Say (984)  |  Science (3879)  |  Sense (770)  |  Theory (970)  |  Useless (33)  |  Utility (49)  |  Way (1217)

In mathematics as in other fields, to find one self lost in wonder at some manifestation is frequently the half of a new discovery.
In Werke, Bd. 8 (1897), 233.
Science quotes on:  |  Discovery (780)  |  Field (364)  |  Find (998)  |  Frequently (21)  |  Half (56)  |  Lose (159)  |  Manifestation (58)  |  Mathematics (1328)  |  New (1216)  |  Other (2236)  |  Self (267)  |  Wonder (236)

In my opinion the English excel in the art of writing text-books for mathematical teaching; as regards the clear exposition of theories and the abundance of excellent examples, carefully selected, very few books exist in other countries which can compete with those of Salmon and many other distinguished English authors that could be named.
In Projective Geometry (1886), Preface.
Science quotes on:  |  Abundance (25)  |  Art (657)  |  Author (167)  |  Book (392)  |  Carefully (65)  |  Clear (100)  |  Compete (6)  |  Country (251)  |  Distinguish (160)  |  Distinguished (83)  |  English (35)  |  Example (94)  |  Excel (4)  |  Excellent (28)  |  Exist (443)  |  Exposition (15)  |  Mathematics (1328)  |  Name (333)  |  Opinion (281)  |  Other (2236)  |  Regard (305)  |  Salmon (7)  |  Select (44)  |  Teach (277)  |  Teaching (188)  |  Textbook (36)  |  Theory (970)  |  Write (230)  |  Writing (189)

In order to comprehend and fully control arithmetical concepts and methods of proof, a high degree of abstraction is necessary, and this condition has at times been charged against arithmetic as a fault. I am of the opinion that all other fields of knowledge require at least an equally high degree of abstraction as mathematics,—provided, that in these fields the foundations are also everywhere examined with the rigour and completeness which is actually necessary.
In 'Die Theorie der algebraischen Zahlkorper', Vorwort, Jahresbericht der Deutschen Mathematiker Vereinigung, Bd. 4.
Science quotes on:  |  Abstraction (47)  |  Actually (27)  |  Against (332)  |  All (4108)  |  Arithmetic (136)  |  Arithmetical (11)  |  Charge (59)  |  Completeness (19)  |  Comprehend (40)  |  Concept (221)  |  Condition (356)  |  Control (167)  |  Degree (276)  |  Equally (130)  |  Everywhere (94)  |  Examine (78)  |  Fault (54)  |  Field (364)  |  Foundation (171)  |  Fully (21)  |  High (362)  |  Knowledge (1529)  |  Least (75)  |  Mathematics (1328)  |  Method (505)  |  Methods (204)  |  Necessary (363)  |  Opinion (281)  |  Order (632)  |  Other (2236)  |  Proof (287)  |  Provide (69)  |  Require (219)  |  Rigour (21)  |  Time (1877)

In other branches of science, where quick publication seems to be so much desired, there may possibly be some excuse for giving to the world slovenly or ill-digested work, but there is no such excuse in mathematics. The form ought to be as perfect as the substance, and the demonstrations as rigorous as those of Euclid. The mathematician has to deal with the most exact facts of Nature, and he should spare no effort to render his interpretation worthy of his subject, and to give to his work its highest degree of perfection. “Pauca sed matura” was Gauss’s motto.
In Presidential Address British Association for the Advancement of Science, Section A, (1890), Nature, 42, 467. [The Latin motto translates as “Few, but ripe”. —Webmaster]
Science quotes on:  |   (2863)  |  Branch (150)  |  Deal (188)  |  Degree (276)  |  Demonstration (113)  |  Desire (204)  |  Effort (227)  |  Euclid (54)  |  Exact (68)  |  Excuse (25)  |  Fact (1210)  |  Facts (553)  |  Form (959)  |  Carl Friedrich Gauss (77)  |  Give (202)  |  High (362)  |  Interpretation (85)  |  Mathematician (387)  |  Mathematics (1328)  |  Most (1731)  |  Motto (28)  |  Nature (1926)  |  Other (2236)  |  Perfect (216)  |  Perfection (129)  |  Possibly (111)  |  Publication (101)  |  Quick (13)  |  Render (93)  |  Rigorous (48)  |  Science (3879)  |  Seem (145)  |  Slovenly (2)  |  Spare (9)  |  Subject (521)  |  Substance (248)  |  Work (1351)  |  World (1774)  |  Worthy (34)

Isolated, so-called “pretty theorems” have even less value in the eyes of a modern mathematician than the discovery of a new “pretty flower” has to the scientific botanist, though the layman finds in these the chief charm of the respective Sciences.
In Die Entwickelung der Mathematik in den letzten Jahrhunderten (1869), 19. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 92. From the original German, “Einzelne, sogenannte „hübsche Sätze“ haben an und für sich in den Augen eines modernen Mathematikers noch weniger Werth, als für den wissenschaftlichen Botaniker die Entdeckung einer neuen „hübschen Blume“, obgleich dem Laien gerade hierin der Hauptreiz der betreffenden Wissenschaft zu liegen pflegt.”
Science quotes on:  |  Botanist (23)  |  Call (769)  |  Charm (51)  |  Chief (97)  |  Discovery (780)  |  Eye (419)  |  Find (998)  |  Flower (106)  |  Isolate (22)  |  Layman (21)  |  Mathematician (387)  |  Modern (385)  |  New (1216)  |  Pretty (20)  |  Respective (2)  |  Science (3879)  |  Scientific (941)  |  So-Called (71)  |  Theorem (112)  |  Value (365)

It is certainly true that all physical phenomena are subject to strictly mathematical conditions, and mathematical processes are unassailable in themselves. The trouble arises from the data employed. Most phenomena are so highly complex that one can never be quite sure that he is dealing with all the factors until the experiment proves it. So that experiment is rather the criterion of mathematical conclusions and must lead the way.
In Matter, Ether, Motion (1894), 89.
Science quotes on:  |  All (4108)  |  Arise (158)  |  Certainly (185)  |  Complex (188)  |  Conclusion (254)  |  Condition (356)  |  Criterion (27)  |  Data (156)  |  Deal (188)  |  Employ (113)  |  Experiment (695)  |  Factor (46)  |  Highly (16)  |  Lead (384)  |  Mathematics (1328)  |  Most (1731)  |  Must (1526)  |  Never (1087)  |  Phenomenon (318)  |  Physical (508)  |  Process (423)  |  Prove (250)  |  Strictly (13)  |  Subject (521)  |  Themselves (433)  |  Trouble (107)  |  True (212)  |  Unassailable (3)  |  Way (1217)

It is no paradox to say that in our most theoretical moods we may be nearest to our most practical applications.
In Introduction to Mathematics, 100.
Science quotes on:  |  Application (242)  |  Mood (13)  |  Most (1731)  |  Paradox (50)  |  Practical (200)  |  Say (984)  |  Theoretical (22)

It is the man not the method that solves the problem.
In 'Present Problems of Algebra and Analysis', Congress of Arts and Sciences: Universal Exposition, St. Louis, 1904 (1905), Vol. 1, 530.
Science quotes on:  |  Man (2251)  |  Method (505)  |  Problem (676)  |  Solve (130)

It is, so to speak, a scientific tact, which must guide mathematicians in their investigations, and guard them from spending their forces on scientifically worthless problems and abstruse realms, a tact which is closely related to esthetic tact and which is the only thing in our science which cannot be taught or acquired, and is yet the indispensable endowment of every mathematician.
In Die Entwickelung der Mathematik in den letzten Jahrhunderten (1869), 28. As translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 92. From the original German, “Es ist, so zu sagen, ein wissenschaftlicher Tact, welcher die Mathematiker bei ihren Untersuchungen leiten, und sie davor bewahren muss, ihre Kräfte auf wissenschaftlich werthlose Probleme und abstruse Gebiete zu wenden, ein Tact, der dem ästhetischen nahe verwandt, das einzige ist, was in unserer Wissenschaft nicht gelehrt und gelernt werden kann, aber eine unentbehrliche Mitgift eines Mathematikers sein sollte.”
Science quotes on:  |  Abstruse (10)  |  Acquire (39)  |  Acquired (78)  |  Closely (12)  |  Endowment (16)  |  Esthetic (3)  |  Force (487)  |  Guard (18)  |  Guide (97)  |  Indispensable (28)  |  Investigation (230)  |  Mathematician (387)  |  Must (1526)  |  Problem (676)  |  Realm (85)  |  Science (3879)  |  Scientific (941)  |  Speak (232)  |  Spend (95)  |  Spending (24)  |  Tact (6)  |  Teach (277)  |  Thing (1915)  |  Worthless (21)

It must happen that in some cases the author is not understood, or is very imperfectly understood; and the question is what is to be done. After giving a reasonable amount of attention to the passage, let the student pass on, reserving the obscurity for future efforts. … The natural tendency of solitary students, I believe, is not to hurry away prematurely from a hard passage, but to hang far too long over it; the just pride that does not like to acknowledge defeat, and the strong will that cannot endure to be thwarted, both urge to a continuance of effort even when success seems hopeless. It is only by experience we gain the conviction that when the mind is thoroughly fatigued it has neither the power to continue with advantage its course in .an assigned direction, nor elasticity to strike out a new path; but that, on the other hand, after being withdrawn for a time from the pursuit, it may return and gain the desired end.
In 'Private Study of Mathematics', Conflict of Studies and other Essays (1873), 68.
Science quotes on:  |  Acknowledge (33)  |  Advantage (134)  |  Amount (151)  |  Assign (13)  |  Attention (190)  |  Author (167)  |  Being (1278)  |  Belief (578)  |  Both (493)  |  Case (99)  |  Continuance (2)  |  Continue (165)  |  Conviction (97)  |  Course (409)  |  Defeat (29)  |  Desire (204)  |  Direction (175)  |  Effort (227)  |  Elasticity (8)  |  End (590)  |  Endure (20)  |  Experience (467)  |  Far (154)  |  Fatigue (12)  |  Future (429)  |  Gain (145)  |  Give (202)  |  Hang (45)  |  Happen (274)  |  Hard (243)  |  Hopeless (16)  |  Hurry (15)  |  Imperfectly (2)  |  Let (61)  |  Long (790)  |  Mind (1338)  |  Must (1526)  |  Natural (796)  |  New (1216)  |  Obscurity (27)  |  On The Other Hand (34)  |  Other (2236)  |  Pass (238)  |  Passage (50)  |  Path (144)  |  Power (746)  |  Premature (20)  |  Pride (78)  |  Pursuit (121)  |  Question (621)  |  Reasonable (27)  |  Reserve (24)  |  Return (124)  |  Seem (145)  |  Solitary (15)  |  Strike (68)  |  Strong (174)  |  Student (300)  |  Success (302)  |  Tendency (99)  |  Thoroughly (67)  |  Time (1877)  |  Understand (606)  |  Understood (156)  |  Urge (17)  |  Will (2355)  |  Withdraw (9)

It would be rash to say that nothing remains for discovery or improvement even in elementary mathematics, but it may be safely asserted that the ground has been so long and so thoroughly explored as to hold out little hope of profitable return for a casual adventurer.
In 'Private Study of Mathematics', Conflict of Studies and other Essays (1873), 73.
Science quotes on:  |  Adventurer (3)  |  Assert (66)  |  Casual (7)  |  Discovery (780)  |  Elementary (96)  |  Exploration (134)  |  Ground (217)  |  Hold (95)  |  Hope (299)  |  Improvement (108)  |  Little (707)  |  Long (790)  |  Mathematics (1328)  |  Nothing (966)  |  Profitable (28)  |  Rash (14)  |  Remain (349)  |  Return (124)  |  Safely (8)  |  Say (984)  |  Thoroughly (67)

It would seem at first sight as if the rapid expansion of the region of mathematics must be a source of danger to its future progress. Not only does the area widen but the subjects of study increase rapidly in number, and the work of the mathematician tends to become more and more specialized. It is, of course, merely a brilliant exaggeration to say that no mathematician is able to understand the work of any other mathematician, but it is certainly true that it is daily becoming more and more difficult for a mathematician to keep himself acquainted, even in a general way, with the progress of any of the branches of mathematics except those which form the field of his own labours. I believe, however, that the increasing extent of the territory of mathematics will always be counteracted by increased facilities in the means of communication. Additional knowledge opens to us new principles and methods which may conduct us with the greatest ease to results which previously were most difficult of access; and improvements in notation may exercise the most powerful effects both in the simplification and accessibility of a subject. It rests with the worker in mathematics not only to explore new truths, but to devise the language by which they may be discovered and expressed; and the genius of a great mathematician displays itself no less in the notation he invents for deciphering his subject than in the results attained. … I have great faith in the power of well-chosen notation to simplify complicated theories and to bring remote ones near and I think it is safe to predict that the increased knowledge of principles and the resulting improvements in the symbolic language of mathematics will always enable us to grapple satisfactorily with the difficulties arising from the mere extent of the subject.
In Presidential Address British Association for the Advancement of Science, Section A., (1890), Nature, 42, 466.
Science quotes on:  |  Access (20)  |  Accessibility (3)  |  Acquaint (9)  |  Additional (6)  |  Area (31)  |  Arise (158)  |  Arising (22)  |  Attain (125)  |  Become (815)  |  Becoming (96)  |  Belief (578)  |  Both (493)  |  Branch (150)  |  Brilliant (53)  |  Bring (90)  |  Certainly (185)  |  Chosen (48)  |  Communication (94)  |  Complicated (115)  |  Conduct (69)  |  Counteract (4)  |  Course (409)  |  Daily (87)  |  Danger (115)  |  Decipher (7)  |  Devise (14)  |  Difficult (246)  |  Difficulty (196)  |  Discover (553)  |  Display (56)  |  Ease (35)  |  Effect (393)  |  Enable (119)  |  Exaggeration (15)  |  Exercise (110)  |  Expansion (41)  |  Exploration (134)  |  Express (186)  |  Extent (139)  |  Facility (11)  |  Faith (203)  |  Field (364)  |  First (1283)  |  First Sight (6)  |  Form (959)  |  Future (429)  |  General (511)  |  Genius (284)  |  Grapple (10)  |  Great (1574)  |  Greatest (328)  |  Himself (461)  |  Improvement (108)  |  Increase (210)  |  Invent (51)  |  Keep (101)  |  Knowledge (1529)  |  Labour (98)  |  Language (293)  |  Less (103)  |  Mathematician (387)  |  Mathematics (1328)  |  Mean (809)  |  Means (579)  |  Mere (84)  |  Merely (316)  |  Method (505)  |  Methods (204)  |  More (2559)  |  Most (1731)  |  Must (1526)  |  New (1216)  |  Notation (27)  |  Number (699)  |  Of Course (20)  |  Open (274)  |  Other (2236)  |  Power (746)  |  Powerful (139)  |  Predict (79)  |  Previously (11)  |  Principle (507)  |  Progress (465)  |  Rapid (33)  |  Rapidly (66)  |  Region (36)  |  Remote (83)  |  Rest (280)  |  Result (677)  |  Safe (54)  |  Satisfactory (17)  |  Say (984)  |  Seem (145)  |  Sight (132)  |  Simplification (20)  |  Simplify (13)  |  Source (93)  |  Specialized (8)  |  Study (653)  |  Subject (521)  |  Symbolic (15)  |  Tend (124)  |  Territory (24)  |  Theory (970)  |  Think (1086)  |  True (212)  |  Truth (1057)  |  Understand (606)  |  Way (1217)  |  Well-Chosen (2)  |  Widen (10)  |  Will (2355)  |  Work (1351)  |  Worker (31)

Let him [the author] be permitted also in all humility to add … that in consequence of the large arrears of algebraical and arithmetical speculations waiting in his mind their turn to be called into outward existence, he is driven to the alternative of leaving the fruits of his meditations to perish (as has been the fate of too many foregone theories, the still-born progeny of his brain, now forever resolved back again into the primordial matter of thought), or venturing to produce from time to time such imperfect sketches as the present, calculated to evoke the mental co-operation of his readers, in whom the algebraical instinct has been to some extent developed, rather than to satisfy the strict demands of rigorously systematic exposition.
In Philosophic Magazine (1863), 460.
Science quotes on:  |  Add (40)  |  Algebra (113)  |  All (4108)  |  Alternative (29)  |  Arithmetical (11)  |  Arrears (2)  |  Author (167)  |  Back (390)  |  Brain (270)  |  Calculate (54)  |  Call (769)  |  Consequence (203)  |  Cooperation (32)  |  Demand (123)  |  Develop (268)  |  Drive (55)  |  Evoke (12)  |  Existence (456)  |  Exposition (15)  |  Extent (139)  |  Fate (72)  |  Forego (4)  |  Forever (103)  |  Fruit (102)  |  Humility (28)  |  Imperfect (45)  |  Instinct (88)  |  Large (394)  |  Leave (130)  |  Let (61)  |  Matter (798)  |  Meditation (19)  |  Mental (177)  |  Mind (1338)  |  Operation (213)  |  Outward (7)  |  Perish (50)  |  Permit (58)  |  Present (619)  |  Primordial (10)  |  Produce (104)  |  Progeny (15)  |  Reader (40)  |  Resolve (40)  |  Rigorous (48)  |  Satisfy (27)  |  Sketch (8)  |  Speculation (126)  |  Still (613)  |  Stillborn (2)  |  Strict (17)  |  Systematic (57)  |  Theory (970)  |  Thought (953)  |  Time (1877)  |  Turn (447)  |  Venture (18)  |  Wait (58)  |  Waiting (43)

Mathematicians attach great importance to the elegance of their methods and their results. This is not pure dilettantism. What is it indeed that gives us the feeling of elegance in a solution, in a demonstration? It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is all that introduces order, all that gives unity, that permits us to see clearly and to comprehend at once both the ensemble and the details. But this is exactly what yields great results, in fact the more we see this aggregate clearly and at a single glance, the better we perceive its analogies with other neighboring objects, consequently the more chances we have of divining the possible generalizations. Elegance may produce the feeling of the unforeseen by the unexpected meeting of objects we are not accustomed to bring together; there again it is fruitful, since it thus unveils for us kinships before unrecognized. It is fruitful even when it results only from the contrast between the simplicity of the means and the complexity of the problem set; it makes us then think of the reason for this contrast and very often makes us see that chance is not the reason; that it is to be found in some unexpected law. In a word, the feeling of mathematical elegance is only the satisfaction due to any adaptation of the solution to the needs of our mind, and it is because of this very adaptation that this solution can be for us an instrument. Consequently this esthetic satisfaction is bound up with the economy of thought.
In 'The Future of Mathematics', Monist, 20, 80. Translated from the French by George Bruce Halsted.
Science quotes on:  |  Accustom (52)  |  Accustomed (46)  |  Adaptation (58)  |  Aesthetic (46)  |  Aggregate (23)  |  All (4108)  |  Analogy (71)  |  Attach (56)  |  Balance (77)  |  Better (486)  |  Both (493)  |  Bound (119)  |  Chance (239)  |  Complexity (111)  |  Comprehend (40)  |  Contrast (44)  |  Demonstration (113)  |  Detail (146)  |  Diverse (17)  |  Due (141)  |  Elegance (37)  |  Ensemble (7)  |  Fact (1210)  |  Feeling (250)  |  Fruitful (58)  |  Generalization (57)  |  Glance (34)  |  Great (1574)  |  Happy (105)  |  Harmony (102)  |  Importance (286)  |  Indeed (324)  |  Instrument (144)  |  Introduce (63)  |  Law (894)  |  Mathematician (387)  |  Mathematics (1328)  |  Mean (809)  |  Means (579)  |  Meeting (20)  |  Method (505)  |  Methods (204)  |  Mind (1338)  |  More (2559)  |  Neighboring (5)  |  Object (422)  |  Order (632)  |  Other (2236)  |  Permit (58)  |  Possible (552)  |  Problem (676)  |  Pure (291)  |  Reason (744)  |  Result (677)  |  Satisfaction (74)  |  See (1081)  |  Set (394)  |  Simplicity (167)  |  Single (353)  |  Solution (267)  |  Symmetry (43)  |  Think (1086)  |  Thought (953)  |  Together (387)  |  Unexpected (52)  |  Unforeseen (10)  |  Unity (78)  |  Word (619)  |  Yield (81)

No mathematician now-a-days sets any store on the discovery of isolated theorems, except as affording hints of an unsuspected new sphere of thought, like meteorites detached from some undiscovered planetary orb of speculation.
In Notes to the Exeter Association Address, Collected Mathematical Papers (1908), Vol. 2, 715.
Science quotes on:  |  Detach (5)  |  Discovery (780)  |  Hint (21)  |  Isolate (22)  |  Mathematician (387)  |  Meteorite (9)  |  New (1216)  |  Orb (20)  |  Planetary (29)  |  Set (394)  |  Speculation (126)  |  Sphere (116)  |  Store (48)  |  Theorem (112)  |  Thought (953)  |  Undiscovered (15)  |  Unsuspected (7)

No more impressive warning can be given to those who would confine knowledge and research to what is apparently useful, than the reflection that conic sections were studied for eighteen hundred years merely as an abstract science, without regard to any utility other than to satisfy the craving for knowledge on the part of mathematicians, and that then at the end of this long period of abstract study, they were found to be the necessary key with which to attain the knowledge of the most important laws of nature.
In Introduction to Mathematics (1911), 136-137.
Science quotes on:  |  Abstract (124)  |  Apparently (20)  |  Attain (125)  |  Confine (26)  |  Conic Section (8)  |  Crave (9)  |  End (590)  |  Find (998)  |  Give (202)  |  Hundred (229)  |  Important (209)  |  Impressive (25)  |  Key (50)  |  Knowledge (1529)  |  Law (894)  |  Long (790)  |  Mathematician (387)  |  Merely (316)  |  More (2559)  |  Most (1731)  |  Nature (1926)  |  Necessary (363)  |  Other (2236)  |  Part (222)  |  Period (198)  |  Reflection (90)  |  Regard (305)  |  Research (664)  |  Satisfy (27)  |  Science (3879)  |  Study (653)  |  Useful (250)  |  Utility (49)  |  Warn (5)  |  Warning (17)  |  Year (933)

Quite distinct from the theoretical question of the manner in which mathematics will rescue itself from the perils to which it is exposed by its own prolific nature is the practical problem of finding means of rendering available for the student the results which have been already accumulated, and making it possible for the learner to obtain some idea of the present state of the various departments of mathematics. … The great mass of mathematical literature will be always contained in Journals and Transactions, but there is no reason why it should not be rendered far more useful and accessible than at present by means of treatises or higher text-books. The whole science suffers from want of avenues of approach, and many beautiful branches of mathematics are regarded as difficult and technical merely because they are not easily accessible. … I feel very strongly that any introduction to a new subject written by a competent person confers a real benefit on the whole science. The number of excellent text-books of an elementary kind that are published in this country makes it all the more to be regretted that we have so few that are intended for the advanced student. As an example of the higher kind of text-book, the want of which is so badly felt in many subjects, I may mention the second part of Prof. Chrystal’s Algebra published last year, which in a small compass gives a great mass of valuable and fundamental knowledge that has hitherto been beyond the reach of an ordinary student, though in reality lying so close at hand. I may add that in any treatise or higher text-book it is always desirable that references to the original memoirs should be given, and, if possible, short historic notices also. I am sure that no subject loses more than mathematics by any attempt to dissociate it from its history.
In Presidential Address British Association for the Advancement of Science, Section A (1890), Nature, 42, 466.
Science quotes on:  |   (2863)  |  Accessible (25)  |  Accumulate (26)  |  Add (40)  |  Advance (280)  |  Algebra (113)  |  All (4108)  |  Already (222)  |  Approach (108)  |  At Hand (4)  |  Attempt (251)  |  Available (78)  |  Avenue (14)  |  Badly (32)  |  Beautiful (258)  |  Benefit (114)  |  Beyond (308)  |  Book (392)  |  Branch (150)  |  George Chrystal (8)  |  Close (69)  |  Compass (34)  |  Competent (20)  |  Confer (11)  |  Contain (68)  |  Country (251)  |  Department (92)  |  Desirable (33)  |  Difficult (246)  |  Distinct (97)  |  Easily (35)  |  Elementary (96)  |  Example (94)  |  Excellent (28)  |  Expose (23)  |  Exposed (33)  |  Far (154)  |  Feel (367)  |  Find (998)  |  Fundamental (250)  |  Give (202)  |  Great (1574)  |  High (362)  |  Historic (7)  |  History (673)  |  Hitherto (6)  |  Idea (843)  |  Intend (16)  |  Introduction (35)  |  Journal (30)  |  Kind (557)  |  Knowledge (1529)  |  Last (426)  |  Learner (10)  |  Lie (364)  |  Literature (103)  |  Lose (159)  |  Lying (55)  |  Making (300)  |  Manner (58)  |  Mass (157)  |  Mathematics (1328)  |  Mean (809)  |  Means (579)  |  Memoir (13)  |  Mention (82)  |  Merely (316)  |  More (2559)  |  Nature (1926)  |  New (1216)  |  Notice (77)  |  Number (699)  |  Obtain (163)  |  Ordinary (160)  |  Original (58)  |  Part (222)  |  Peril (9)  |  Person (363)  |  Possible (552)  |  Practical (200)  |  Present (619)  |  Problem (676)  |  Prof (2)  |  Prolific (5)  |  Publish (36)  |  Question (621)  |  Reach (281)  |  Real (149)  |  Reality (261)  |  Reason (744)  |  Reference (33)  |  Regard (305)  |  Regret (30)  |  Render (93)  |  Rescue (13)  |  Result (677)  |  Science (3879)  |  Second (62)  |  Short (197)  |  Small (477)  |  State (491)  |  Strongly (9)  |  Student (300)  |  Subject (521)  |  Suffer (41)  |  Technical (43)  |  Textbook (36)  |  Theory (970)  |  Transaction (13)  |  Treatise (44)  |  Useful (250)  |  Value (365)  |  Various (200)  |  Want (497)  |  Whole (738)  |  Why (491)  |  Will (2355)  |  Write (230)  |  Year (933)

Research may start from definite problems whose importance it recognizes and whose solution is sought more or less directly by all forces. But equally legitimate is the other method of research which only selects the field of its activity and, contrary to the first method, freely reconnoitres in the search for problems which are capable of solution. Different individuals will hold different views as to the relative value of these two methods. If the first method leads to greater penetration it is also easily exposed to the danger of unproductivity. To the second method we owe the acquisition of large and new fields, in which the details of many things remain to be determined and explored by the first method.
In Zum Gedächtniss an Julius Plucker', Göttinger Abhandlungen (1871), 16, Mathematische Classe, 6.
Science quotes on:  |  Acquisition (45)  |  Activity (210)  |  All (4108)  |  Capable (168)  |  Contrary (141)  |  Danger (115)  |  Definite (110)  |  Detail (146)  |  Determine (144)  |  Different (577)  |  Easy (204)  |  Equally (130)  |  Exploration (134)  |  Expose (23)  |  Exposed (33)  |  Field (364)  |  First (1283)  |  Force (487)  |  Freely (13)  |  Great (1574)  |  Greater (288)  |  Hold (95)  |  Importance (286)  |  Individual (404)  |  Large (394)  |  Lead (384)  |  Legitimate (25)  |  Method (505)  |  Methods (204)  |  More (2559)  |  More Or Less (68)  |  New (1216)  |  Other (2236)  |  Owe (71)  |  Penetration (18)  |  Problem (676)  |  Productivity (21)  |  Recognize (125)  |  Reconnoitre (2)  |  Relative (39)  |  Remain (349)  |  Research (664)  |  Search (162)  |  Select (44)  |  Solution (267)  |  Start (221)  |  Thing (1915)  |  Two (937)  |  Value (365)  |  View (488)  |  Will (2355)

Scientific subjects do not progress necessarily on the lines of direct usefulness. Very many applications of the theories of pure mathematics have come many years, sometimes centuries, after the actual discoveries themselves. The weapons were at hand, but the men were not able to use them.
In Perry, Teaching of Mathematics (1902), 35.
Science quotes on:  |  Actual (117)  |  Application (242)  |  At Hand (4)  |  Century (310)  |  Direct (225)  |  Discovery (780)  |  Do (1908)  |  Mathematics (1328)  |  Necessarily (135)  |  Progress (465)  |  Pure (291)  |  Pure Mathematics (67)  |  Scientific (941)  |  Subject (521)  |  Themselves (433)  |  Theory (970)  |  Use (766)  |  Usefulness (86)  |  Weapon (92)  |  Weapons (58)  |  Year (933)

Students should learn to study at an early stage the great works of the great masters instead of making their minds sterile through the everlasting exercises of college, which are of no use whatever, except to produce a new Arcadia where indolence is veiled under the form of useless activity. … Hard study on the great models has ever brought out the strong; and of such must be our new scientific generation if it is to be worthy of the era to which it is born and of the struggles to which it is destined.
In Giornale di matematiche, Vol. 11, 153.
Science quotes on:  |  Activity (210)  |  Born (33)  |  College (66)  |  Destined (42)  |  Early (185)  |  Era (51)  |  Everlasting (8)  |  Exercise (110)  |  Form (959)  |  Generation (242)  |  Great (1574)  |  Hard (243)  |  Indolence (8)  |  Learn (629)  |  Making (300)  |  Master (178)  |  Mind (1338)  |  Model (102)  |  Must (1526)  |  New (1216)  |  Produce (104)  |  Scientific (941)  |  Stage (143)  |  Sterile (21)  |  Strong (174)  |  Struggle (105)  |  Student (300)  |  Study (653)  |  Through (849)  |  Use (766)  |  Useless (33)  |  Veil (26)  |  Whatever (234)  |  Work (1351)  |  Worthy (34)

Success in the solution of a problem generally depends in a great measure on the selection of the most appropriate method of approaching it; many properties of conic sections (for instance) being demonstrable by a few steps of pure geometry which would involve the most laborious operations with trilinear co-ordinates, while other properties are almost self-evident under the method of trilinear co-ordinates, which it would perhaps be actually impossible to prove by the old geometry.
In Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions (1866), 154.
Science quotes on:  |  Approach (108)  |  Appropriate (61)  |  Being (1278)  |  Conic Section (8)  |  Depend (228)  |  Evident (91)  |  Geometry (255)  |  Great (1574)  |  Impossible (251)  |  Involve (90)  |  Laborious (14)  |  Measure (232)  |  Method (505)  |  Most (1731)  |  Old (481)  |  Operation (213)  |  Operations (107)  |  Other (2236)  |  Problem (676)  |  Property (168)  |  Prove (250)  |  Pure (291)  |  Selection (128)  |  Self (267)  |  Self-Evident (21)  |  Solution (267)  |  Step (231)  |  Success (302)

The aim of research is the discovery of the equations which subsist between the elements of phenomena.
In Popular Scientific Lectures (1910), 205.
Science quotes on:  |  Aim (165)  |  Discovery (780)  |  Element (310)  |  Equation (132)  |  Phenomenon (318)  |  Research (664)  |  Subsist (5)

The anxious precision of modern mathematics is necessary for accuracy, … it is necessary for research. It makes for clearness of thought and for fertility in trying new combinations of ideas. When the initial statements are vague and slipshod, at every subsequent stage of thought, common sense has to step in to limit applications and to explain meanings. Now in creative thought common sense is a bad master. Its sole criterion for judgment is that the new ideas shall look like the old ones, in other words it can only act by suppressing originality.
In Introduction to Mathematics (1911), 157.
Science quotes on:  |  Accuracy (78)  |  Act (272)  |  Anxious (3)  |  Application (242)  |  Bad (180)  |  Clearness (11)  |  Combination (144)  |  Common (436)  |  Common Sense (130)  |  Creative (137)  |  Criterion (27)  |  Explain (322)  |  Fertility (19)  |  Idea (843)  |  In Other Words (9)  |  Initial (17)  |  Judgment (132)  |  Limit (280)  |  Look (582)  |  Master (178)  |  Mathematics (1328)  |  Meaning (233)  |  Meanings (5)  |  Modern (385)  |  Modern Mathematics (50)  |  Necessary (363)  |  New (1216)  |  New Ideas (16)  |  Old (481)  |  Originality (19)  |  Other (2236)  |  Precision (68)  |  Research (664)  |  Sense (770)  |  Sole (49)  |  Stage (143)  |  Statement (142)  |  Step (231)  |  Subsequent (33)  |  Suppress (6)  |  Thought (953)  |  Try (283)  |  Trying (144)  |  Vague (47)  |  Word (619)

The discovery of the conic sections, attributed to Plato, first threw open the higher species of form to the contemplation of geometers. But for this discovery, which was probably regarded in Plato’s tune and long after him, as the unprofitable amusement of a speculative brain, the whole course of practical philosophy of the present day, of the science of astronomy, of the theory of projectiles, of the art of navigation, might have run in a different channel; and the greatest discovery that has ever been made in the history of the world, the law of universal gravitation, with its innumerable direct and indirect consequences and applications to every department of human research and industry, might never to this hour have been elicited.
In 'A Probationary Lecture on Geometry, Collected Mathematical Papers, Vol. 2 (1908), 7.
Science quotes on:  |   (2863)  |  Amusement (33)  |  Application (242)  |  Art (657)  |  Astronomy (229)  |  Attribute (61)  |  Brain (270)  |  Channel (21)  |  Conic Section (8)  |  Consequence (203)  |  Contemplation (73)  |  Course (409)  |  Department (92)  |  Different (577)  |  Direct (225)  |  Discovery (780)  |  Elicit (2)  |  First (1283)  |  Form (959)  |  Geometer (24)  |  Gravitation (70)  |  Great (1574)  |  Greatest (328)  |  High (362)  |  History (673)  |  Hour (186)  |  Human (1468)  |  Indirect (18)  |  Industry (137)  |  Innumerable (55)  |  Law (894)  |  Law Of Universal Gravitation (3)  |  Long (790)  |  Navigation (25)  |  Never (1087)  |  Open (274)  |  Philosophy (380)  |  Plato (76)  |  Practical (200)  |  Present (619)  |  Present Day (5)  |  Probably (49)  |  Projectile (3)  |  Regard (305)  |  Research (664)  |  Run (174)  |  Science (3879)  |  Species (401)  |  Speculative (9)  |  Theory (970)  |  Throw (43)  |  Tune (19)  |  Universal (189)  |  Unprofitable (4)  |  Whole (738)  |  World (1774)

The examples which a beginner should choose for practice should be simple and should not contain very large numbers. The powers of the mind cannot be directed to two things at once; if the complexity of the numbers used requires all the student’s attention, he cannot observe the principle of the rule which he is following.
In Study and Difficulties of Mathematics (1902), chap. 3.
Science quotes on:  |   (2863)  |  All (4108)  |  Attention (190)  |  Beginner (11)  |  Choose (112)  |  Complexity (111)  |  Contain (68)  |  Direct (225)  |  Example (94)  |  Follow (378)  |  Large (394)  |  Mind (1338)  |  Number (699)  |  Observe (168)  |  Power (746)  |  Practice (204)  |  Principle (507)  |  Require (219)  |  Rule (294)  |  Simple (406)  |  Student (300)  |  Thing (1915)  |  Two (937)

The great mathematicians have acted on the principle “Divinez avant de demontrer”, and it is certainly true that almost all important discoveries are made in this fashion.
In 'The Present Problems in Geometry', Bulletin American Mathematical Society, 11, 285. [The French phrase has the sense of “Guess before proving”. —Webmaster]
Science quotes on:  |  Act (272)  |  All (4108)  |  Certainly (185)  |  Discovery (780)  |  Fashion (30)  |  Great (1574)  |  Important (209)  |  Mathematician (387)  |  Principle (507)  |  True (212)

The greatest mathematicians, as Archimedes, Newton, and Gauss, always united theory and applications in equal measure.
In Elementarmathematik von höheren Standpunkte aus (1909), Bd. 2, 392.
Science quotes on:  |  Application (242)  |  Archimedes (55)  |  Equal (83)  |  Carl Friedrich Gauss (77)  |  Great (1574)  |  Greatest (328)  |  Mathematician (387)  |  Measure (232)  |  Sir Isaac Newton (333)  |  Theory (970)  |  United (14)

The Greeks in the first vigour of their pursuit of mathematical truth, at the time of Plato and soon after, had by no means confined themselves to those propositions which had a visible bearing on the phenomena of nature; but had followed out many beautiful trains of research concerning various kinds of figures, for the sake of their beauty alone; as for instance in their doctrine of Conic Sections, of which curves they had discovered all the principal properties. But it is curious to remark, that these investigations, thus pursued at first as mere matters of curiosity and intellectual gratification, were destined, two thousand years later, to play a very important part in establishing that system of celestial motions which succeeded the Platonic scheme of cycles and epicycles. If the properties of conic sections had not been demonstrated by the Greeks and thus rendered familiar to the mathematicians of succeeding ages, Kepler would probably not have been able to discover those laws respecting the orbits and motions of planets which were the occasion of the greatest revolution that ever happened in the history of science.
In History of Scientific Ideas, Bk. 9, chap. 14, sect. 3.
Science quotes on:  |  Age (499)  |  All (4108)  |  Alone (311)  |  Bear (159)  |  Beautiful (258)  |  Beauty (299)  |  Celestial (53)  |  Concern (228)  |  Confine (26)  |  Conic Section (8)  |  Curiosity (128)  |  Curious (91)  |  Curve (49)  |  Cycle (40)  |  Demonstrate (76)  |  Destined (42)  |  Discover (553)  |  Doctrine (75)  |  Epicycle (4)  |  Establish (57)  |  Familiar (43)  |  Figure (160)  |  First (1283)  |  Follow (378)  |  Gratification (20)  |  Great (1574)  |  Greatest (328)  |  Greek (107)  |  Happen (274)  |  Happened (88)  |  History (673)  |  History Of Science (63)  |  Important (209)  |  Instance (33)  |  Intellectual (255)  |  Investigation (230)  |  Kepler (4)  |  Kind (557)  |  Late (118)  |  Law (894)  |  Mathematician (387)  |  Mathematics (1328)  |  Matter (798)  |  Mean (809)  |  Means (579)  |  Mere (84)  |  Motion (310)  |  Nature (1926)  |  Occasion (85)  |  Orbit (81)  |  Part (222)  |  Phenomenon (318)  |  Planet (356)  |  Plato (76)  |  Platonic (3)  |  Play (112)  |  Principal (63)  |  Probably (49)  |  Property (168)  |  Proposition (123)  |  Pursue (58)  |  Pursuit (121)  |  Remark (28)  |  Render (93)  |  Research (664)  |  Respect (207)  |  Revolution (129)  |  Sake (58)  |  Scheme (57)  |  Science (3879)  |  Soon (186)  |  Succeed (109)  |  Succeeding (14)  |  System (537)  |  Themselves (433)  |  Thousand (331)  |  Time (1877)  |  Train (114)  |  Truth (1057)  |  Two (937)  |  Various (200)  |  Vigour (18)  |  Visible (84)  |  Year (933)

The history of mathematics is important also as a valuable contribution to the history of civilization. Human progress is closely identified with scientific thought. Mathematical and physical researches are a reliable record of intellectual progress.
In History of Mathematics (1897), 4.
Science quotes on:  |  Civilization (204)  |  Closely (12)  |  Contribution (89)  |  History (673)  |  History Of Mathematics (7)  |  Human (1468)  |  Identify (13)  |  Important (209)  |  Intellectual (255)  |  Mathematics (1328)  |  Physical (508)  |  Progress (465)  |  Record (154)  |  Reliable (12)  |  Research (664)  |  Scientific (941)  |  Scientific Thought (17)  |  Thought (953)  |  Value (365)

The history of mathematics may be instructive as well as agreeable; it may not only remind us of what we have, but may also teach us to increase our store. Says De Morgan, “The early history of the mind of men with regards to mathematics leads us to point out our own errors; and in this respect it is well to pay attention to the history of mathematics.” It warns us against hasty conclusions; it points out the importance of a good notation upon the progress of the science; it discourages excessive specialization on the part of the investigator, by showing how apparently distinct branches have been found to possess unexpected connecting links; it saves the student from wasting time and energy upon problems which were, perhaps, solved long since; it discourages him from attacking an unsolved problem by the same method which has led other mathematicians to failure; it teaches that fortifications can be taken by other ways than by direct attack, that when repulsed from a direct assault it is well to reconnoiter and occupy the surrounding ground and to discover the secret paths by which the apparently unconquerable position can be taken.
In History of Mathematics (1897), 1-2.
Science quotes on:  |  Against (332)  |  Agreeable (18)  |  Apparently (20)  |  Assault (12)  |  Attack (84)  |  Attention (190)  |  Branch (150)  |  Conclusion (254)  |  Connect (125)  |  Augustus De Morgan (45)  |  Direct (225)  |  Discourage (13)  |  Discover (553)  |  Distinct (97)  |  Early (185)  |  Energy (344)  |  Error (321)  |  Excessive (23)  |  Failure (161)  |  Find (998)  |  Fortification (6)  |  Good (889)  |  Ground (217)  |  Hasty (6)  |  History (673)  |  History Of Mathematics (7)  |  Importance (286)  |  Increase (210)  |  Instruction (91)  |  Investigator (67)  |  Lead (384)  |  Link (43)  |  Long (790)  |  Mathematician (387)  |  Mathematics (1328)  |  Method (505)  |  Mind (1338)  |  Notation (27)  |  Occupy (26)  |  Other (2236)  |  Part (222)  |  Path (144)  |  Pay (43)  |  Point (580)  |  Point Out (8)  |  Position (77)  |  Possess (156)  |  Problem (676)  |  Progress (465)  |  Reconnoitre (2)  |  Regard (305)  |  Remind (13)  |  Repulse (2)  |  Respect (207)  |  Save (118)  |  Say (984)  |  Science (3879)  |  Secret (194)  |  Show (346)  |  Solve (130)  |  Specialization (23)  |  Store (48)  |  Student (300)  |  Surround (30)  |  Teach (277)  |  Time (1877)  |  Unconquerable (3)  |  Unexpected (52)  |  Unsolved (15)  |  Warn (5)  |  Waste (101)  |  Way (1217)

The importance of a result is largely relative, is judged differently by different men, and changes with the times and circumstances. It has often happened that great importance has been attached to a problem merely on account of the difficulties which it presented; and indeed if for its solution it has been necessary to invent new methods, noteworthy artifices, etc., the science has gained more perhaps through these than through the final result. In general we may call important all investigations relating to things which in themselves are important; all those which have a large degree of generality, or which unite under a single point of view subjects apparently distinct, simplifying and elucidating them; all those which lead to results that promise to be the source of numerous consequences; etc.
From 'On Some Recent Tendencies in Geometric Investigations', Rivista di Matematica (1891), 44. In Bulletin American Mathematical Society (1904), 444.
Science quotes on:  |  Account (192)  |  All (4108)  |  Apparent (84)  |  Artifice (4)  |  Attach (56)  |  Attached (36)  |  Call (769)  |  Change (593)  |  Circumstance (136)  |  Circumstances (108)  |  Consequence (203)  |  Degree (276)  |  Different (577)  |  Difficulty (196)  |  Distinct (97)  |  Elucidate (4)  |  Final (118)  |  Gain (145)  |  General (511)  |  Generality (45)  |  Great (1574)  |  Happen (274)  |  Happened (88)  |  Importance (286)  |  Indeed (324)  |  Invent (51)  |  Investigation (230)  |  Judge (108)  |  Large (394)  |  Lead (384)  |  Merely (316)  |  Method (505)  |  Methods (204)  |  More (2559)  |  Necessary (363)  |  New (1216)  |  Noteworthy (2)  |  Numerous (68)  |  Point (580)  |  Point Of View (80)  |  Present (619)  |  Problem (676)  |  Promise (67)  |  Relative (39)  |  Result (677)  |  Science (3879)  |  Simplify (13)  |  Single (353)  |  Solution (267)  |  Source (93)  |  Subject (521)  |  Themselves (433)  |  Thing (1915)  |  Through (849)  |  Time (1877)  |  Unite (42)  |  View (488)

The large collection of problems which our modern Cambridge books supply will be found to be almost an exclusive peculiarity of these books; such collections scarcely exist in foreign treatises on mathematics, nor even in English treatises of an earlier date. This fact shows, I think, that a knowledge of mathematics may be gained without the perpetual working of examples. … Do not trouble yourselves with the examples, make it your main business, I might almost say your exclusive business, to understand the text of your author.
In 'Private Study of Mathematics', Conflict of Studies and other Essays (1873), 74.
Science quotes on:  |  Author (167)  |  Book (392)  |  Business (149)  |  Cambridge (16)  |  Collection (64)  |  Date (13)  |  Do (1908)  |  Early (185)  |  English (35)  |  Example (94)  |  Exclusive (29)  |  Exist (443)  |  Fact (1210)  |  Find (998)  |  Foreign (45)  |  Gain (145)  |  Knowledge (1529)  |  Large (394)  |  Main (28)  |  Mathematics (1328)  |  Modern (385)  |  Peculiarity (25)  |  Perpetual (57)  |  Problem (676)  |  Say (984)  |  Scarcely (74)  |  Show (346)  |  Supply (93)  |  Text (14)  |  Think (1086)  |  Treatise (44)  |  Trouble (107)  |  Understand (606)  |  Will (2355)  |  Work (1351)

The mathematician requires tact and good taste at every step of his work, and he has to learn to trust to his own instinct to distinguish between what is really worthy of his efforts and what is not; he must take care not to be the slave of his symbols, but always to have before his mind the realities which they merely serve to express. For these and other reasons it seems to me of the highest importance that a mathematician should be trained in no narrow school; a wide course of reading in the first few years of his mathematical study cannot fail to influence for good the character of the whole of his subsequent work.
In Presidential Address British Association for the Advancement of Science, Section A, (1890), Nature, 42, 467.
Science quotes on:  |  Care (186)  |  Character (243)  |  Course (409)  |  Distinguish (160)  |  Effort (227)  |  Express (186)  |  Fail (185)  |  First (1283)  |  Good (889)  |  High (362)  |  Importance (286)  |  Influence (222)  |  Instinct (88)  |  Learn (629)  |  Mathematician (387)  |  Mathematics (1328)  |  Merely (316)  |  Mind (1338)  |  Must (1526)  |  Narrow (84)  |  Other (2236)  |  Read (287)  |  Reading (133)  |  Reality (261)  |  Really (78)  |  Reason (744)  |  Require (219)  |  School (219)  |  Seem (145)  |  Serve (59)  |  Slave (37)  |  Step (231)  |  Study (653)  |  Subsequent (33)  |  Symbol (93)  |  Tact (6)  |  Taste (90)  |  Train (114)  |  Trust (66)  |  Whole (738)  |  Wide (96)  |  Work (1351)  |  Worthy (34)  |  Year (933)

The more a science advances, the more will it be possible to understand immediately results which formerly could be demonstrated only by means of lengthy intermediate considerations: a mathematical subject cannot be considered as finally completed until this end has been attained.
In Formensystem binärer Formen (1875), 2.
Science quotes on:  |  Advance (280)  |  Attain (125)  |  Complete (204)  |  Completed (30)  |  Consider (416)  |  Consideration (139)  |  Demonstrate (76)  |  End (590)  |  Finally (26)  |  Formerly (5)  |  Immediately (114)  |  Intermediate (37)  |  Lengthy (3)  |  Mathematics (1328)  |  Mean (809)  |  Means (579)  |  More (2559)  |  Possible (552)  |  Result (677)  |  Science (3879)  |  Subject (521)  |  Understand (606)  |  Will (2355)

The origin of a science is usually to be sought for not in any systematic treatise, but in the investigation and solution of some particular problem. This is especially the case in the ordinary history of the great improvements in any department of mathematical science. Some problem, mathematical or physical, is proposed, which is found to be insoluble by known methods. This condition of insolubility may arise from one of two causes: Either there exists no machinery powerful enough to effect the required reduction, or the workmen are not sufficiently expert to employ their tools in the performance of an entirely new piece of work. The problem proposed is, however, finally solved, and in its solution some new principle, or new application of old principles, is necessarily introduced. If a principle is brought to light it is soon found that in its application it is not necessarily limited to the particular question which occasioned its discovery, and it is then stated in an abstract form and applied to problems of gradually increasing generality.
Other principles, similar in their nature, are added, and the original principle itself receives such modifications and extensions as are from time to time deemed necessary. The same is true of new applications of old principles; the application is first thought to be merely confined to a particular problem, but it is soon recognized that this problem is but one, and generally a very simple one, out of a large class, to which the same process of investigation and solution are applicable. The result in both of these cases is the same. A time comes when these several problems, solutions, and principles are grouped together and found to produce an entirely new and consistent method; a nomenclature and uniform system of notation is adopted, and the principles of the new method become entitled to rank as a distinct science.
In A Treatise on Projections (1880), Introduction, xi. Published as United States Coast and Geodetic Survey, Treasury Department Document, No. 61.
Science quotes on:  |  Abstract (124)  |  Add (40)  |  Adopt (19)  |  Applicable (31)  |  Application (242)  |  Applied (177)  |  Apply (160)  |  Arise (158)  |  Become (815)  |  Both (493)  |  Bring (90)  |  Case (99)  |  Cause (541)  |  Class (164)  |  Condition (356)  |  Confine (26)  |  Consistent (48)  |  Deem (6)  |  Department (92)  |  Discovery (780)  |  Distinct (97)  |  Effect (393)  |  Employ (113)  |  Enough (340)  |  Entirely (34)  |  Entitle (3)  |  Especially (31)  |  Exist (443)  |  Expert (65)  |  Extension (59)  |  Finally (26)  |  Find (998)  |  First (1283)  |  Form (959)  |  Generality (45)  |  Generally (15)  |  Gradually (102)  |  Great (1574)  |  Group (78)  |  History (673)  |  Improvement (108)  |  Increase (210)  |  Insoluble (15)  |  Introduce (63)  |  Investigation (230)  |  Know (1518)  |  Known (454)  |  Large (394)  |  Light (607)  |  Limit (280)  |  Limited (101)  |  Machinery (56)  |  Mathematics (1328)  |  Merely (316)  |  Method (505)  |  Methods (204)  |  Modification (55)  |  Nature (1926)  |  Necessarily (135)  |  Necessary (363)  |  New (1216)  |  Nomenclature (146)  |  Notation (27)  |  Occasion (85)  |  Old (481)  |  Ordinary (160)  |  Origin (239)  |  Original (58)  |  Other (2236)  |  Particular (76)  |  Performance (48)  |  Physical (508)  |  Piece (38)  |  Powerful (139)  |  Principle (507)  |  Problem (676)  |  Process (423)  |  Produce (104)  |  Propose (23)  |  Question (621)  |  Rank (67)  |  Receive (114)  |  Recognize (125)  |  Reduction (51)  |  Require (219)  |  Required (108)  |  Result (677)  |  Same (157)  |  Science (3879)  |  Seek (213)  |  Several (32)  |  Similar (36)  |  Simple (406)  |  Solution (267)  |  Solution. (53)  |  Solve (130)  |  Soon (186)  |  State (491)  |  Sufficiently (9)  |  System (537)  |  Systematic (57)  |  Thought (953)  |  Time (1877)  |  Together (387)  |  Tool (117)  |  Treatise (44)  |  True (212)  |  Two (937)  |  Uniform (18)  |  Usually (176)  |  Work (1351)  |  Workman (13)

The solution of fallacies, which give rise to absurdities, should be to him who is not a first beginner in mathematics an excellent means of testing for a proper intelligible insight into mathematical truth, of sharpening the wit, and of confining the judgment and reason within strictly orderly limits
In 'Vorwort', Mathematische Sophismen (1864), 3. As translated and cited in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath's Quotation-Book (1914), 89. From the original German, “Das Aufsuchen der Trugschlüsse, durch welche Ungereimtheiten entstellen, dürfte nun für den nicht ganz ersten Anfänger in der Mathematik ein vorzügliches Mittel sein, eine richtige begriffliche Einsicht in die mathematischen Wahrheiten zu erproben, den Verstand zu schärfen und das Urtheilen und Schliessen in streng geregelte Grenzen zu dämmen.”
Science quotes on:  |  Absurdity (32)  |  Beginner (11)  |  Confine (26)  |  Excellent (28)  |  Fallacy (30)  |  First (1283)  |  Insight (102)  |  Intelligible (34)  |  Judgment (132)  |  Limit (280)  |  Mathematics (1328)  |  Mean (809)  |  Means (579)  |  Orderly (38)  |  Proper (144)  |  Reason (744)  |  Rise (166)  |  Sharpen (22)  |  Solution (267)  |  Strict (17)  |  Test (211)  |  Truth (1057)  |  Wit (59)

The student of mathematics often finds it hard to throw off the uncomfortable feeling that his science, in the person of his pencil, surpasses him in intelligence,—an impression which the great Euler confessed he often could not get rid of. This feeling finds a sort of justification when we reflect that the majority of the ideas we deal with were conceived by others, often centuries ago. In a great measure it is really the intelligence of other people that confronts us in science.
In Popular Scientific Lectures (1910), 196.
Science quotes on:  |  Century (310)  |  Conceive (98)  |  Confess (42)  |  Confront (17)  |  Deal (188)  |  Leonhard Euler (35)  |  Feel (367)  |  Feeling (250)  |  Find (998)  |  Get Rid (4)  |  Great (1574)  |  Hard (243)  |  Idea (843)  |  Impression (114)  |  Intelligence (211)  |  Justification (48)  |  Majority (66)  |  Mathematics (1328)  |  Measure (232)  |  Often (106)  |  Other (2236)  |  Pencil (20)  |  People (1005)  |  Person (363)  |  Really (78)  |  Reflect (32)  |  Science (3879)  |  Sort (49)  |  Student (300)  |  Surpass (32)  |  Throw (43)  |  Uncomfortable (6)

The student should not lose any opportunity of exercising himself in numerical calculation and particularly in the use of logarithmic tables. His power of applying mathematics to questions of practical utility is in direct proportion to the facility which he possesses in computation.
In Study and Difficulties of Mathematics (1902), chap. 12.
Science quotes on:  |  Apply (160)  |  Calculation (127)  |  Computation (24)  |  Direct (225)  |  Exercise (110)  |  Facility (11)  |  Himself (461)  |  Logarithmic (5)  |  Lose (159)  |  Mathematics (1328)  |  Numerical (39)  |  Opportunity (87)  |  Particularly (21)  |  Possess (156)  |  Power (746)  |  Practical (200)  |  Proportion (136)  |  Question (621)  |  Student (300)  |  Table (104)  |  Use (766)  |  Utility (49)

The student should read his author with the most sustained attention, in order to discover the meaning of every sentence. If the book is well written, it will endure and repay his close attention: the text ought to be fairly intelligible, even without illustrative examples. Often, far too often, a reader hurries over the text without any sincere and vigorous effort to understand it; and rushes to some example to clear up what ought not to have been obscure, if it had been adequately considered. The habit of scrupulously investigating the text seems to me important on several grounds. The close scrutiny of language is a very valuable exercise both for studious and practical life. In the higher departments of mathematics the habit is indispensable: in the long investigations which occur there it would be impossible to interpose illustrative examples at every stage, the student must therefore encounter and master, sentence by sentence, an extensive and complicated argument.
In 'Private Study of Mathematics', Conflict of Studies and other Essays (1873), 67.
Science quotes on:  |  Adequately (3)  |  Argument (138)  |  Attention (190)  |  Author (167)  |  Book (392)  |  Both (493)  |  Clear (100)  |  Close (69)  |  Complicated (115)  |  Consider (416)  |  Department (92)  |  Discover (553)  |  Effort (227)  |  Encounter (22)  |  Endure (20)  |  Example (94)  |  Exercise (110)  |  Extensive (33)  |  Fairly (4)  |  Far (154)  |  Ground (217)  |  Habit (168)  |  High (362)  |  Hurry (15)  |  Important (209)  |  Impossible (251)  |  Indispensable (28)  |  Intelligible (34)  |  Investigate (103)  |  Investigation (230)  |  Language (293)  |  Life (1795)  |  Long (790)  |  Master (178)  |  Mathematics (1328)  |  Mean (809)  |  Meaning (233)  |  Most (1731)  |  Must (1526)  |  Obscure (62)  |  Occur (150)  |  Often (106)  |  Order (632)  |  Practical (200)  |  Read (287)  |  Reader (40)  |  Repay (3)  |  Rush (18)  |  Scrupulous (6)  |  Scrutiny (15)  |  Seem (145)  |  Sentence (29)  |  Several (32)  |  Sincere (4)  |  Stage (143)  |  Student (300)  |  Studious (5)  |  Sustain (46)  |  Text (14)  |  Understand (606)  |  Value (365)  |  Vigorous (20)  |  Will (2355)  |  Write (230)

This conviction of the solvability of every mathematical problem is a powerful incentive to the worker. We hear within us the perpetual call: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is no ignorabimus!
Ignorabimus as used here, means “we will not know” (which is slightly different from ignoramus meaning present ignorance, “we do not know”). In Lecture (1900), 'Mathematische Probleme' (Mathematical Problems), to the International Congress of Mathematicians, Paris. From the original German reprinted in David Hilbert: Gesammelte Abhandlungen (Collected Treatises, 1970), Vol. 3, 298, “Diese Überzeugung von der Lösbarkeit eines jeden mathematischer Problems ist uns ein kräftiger Ansporn während der Arbeit ; wir hören in uns den steten Zuruf: Da ist das Problem, suche die Lösung. Du kannst sie durch reines Denken finden; denn in der Mathematik gibt es kein Ignorabimus. English version as translated by Dr. Maby Winton Newson for Bulletin of the American Mathematical Society (1902), 8, 437-479. The address was first published in Göttinger Nachrichten is Nachrichten von der Königl. Gesellschaft der Wiss. zu Göttingen (1900), 253-297; and Archiv der Mathematik und Physik (1901), 3, No. 1, 44-63.
Science quotes on:  |  Call (769)  |  Conviction (97)  |  Find (998)  |  Hear (139)  |  Ignorance (240)  |  Incentive (9)  |  Mathematics (1328)  |  Perpetual (57)  |  Powerful (139)  |  Problem (676)  |  Pure (291)  |  Reason (744)  |  Seek (213)  |  Solution (267)  |  Solve (130)  |  Worker (31)

Though we must not without further consideration condemn a body of reasoning merely because it is easy, nevertheless we must not allow ourselves to be lured on merely by easiness; and we should take care that every problem which we choose for attack, whether it be easy or difficult, shall have a useful purpose, that it shall contribute in some measure to the up-building of the great edifice.
From 'On Some Recent Tendencies in Geometric Investigation', Rivista di Matematica (1891), 63. In Bulletin American Mathematical Society (1904), 465.
Science quotes on:  |  Attack (84)  |  Body (537)  |  Build (204)  |  Building (156)  |  Care (186)  |  Choose (112)  |  Condemn (44)  |  Consideration (139)  |  Contribute (27)  |  Difficult (246)  |  Easiness (4)  |  Easy (204)  |  Edifice (26)  |  Great (1574)  |  Lure (7)  |  Measure (232)  |  Merely (316)  |  Must (1526)  |  Nevertheless (90)  |  Ourselves (245)  |  Problem (676)  |  Purpose (317)  |  Reasoning (207)  |  Useful (250)

To emphasize this opinion that mathematicians would be unwise to accept practical issues as the sole guide or the chief guide in the current of their investigations, ... let me take one more instance, by choosing a subject in which the purely mathematical interest is deemed supreme, the theory of functions of a complex variable. That at least is a theory in pure mathematics, initiated in that region, and developed in that region; it is built up in scores of papers, and its plan certainly has not been, and is not now, dominated or guided by considerations of applicability to natural phenomena. Yet what has turned out to be its relation to practical issues? The investigations of Lagrange and others upon the construction of maps appear as a portion of the general property of conformal representation; which is merely the general geometrical method of regarding functional relations in that theory. Again, the interesting and important investigations upon discontinuous two-dimensional fluid motion in hydrodynamics, made in the last twenty years, can all be, and now are all, I believe, deduced from similar considerations by interpreting functional relations between complex variables. In the dynamics of a rotating heavy body, the only substantial extension of our knowledge since the time of Lagrange has accrued from associating the general properties of functions with the discussion of the equations of motion. Further, under the title of conjugate functions, the theory has been applied to various questions in electrostatics, particularly in connection with condensers and electrometers. And, lastly, in the domain of physical astronomy, some of the most conspicuous advances made in the last few years have been achieved by introducing into the discussion the ideas, the principles, the methods, and the results of the theory of functions. … the refined and extremely difficult work of Poincare and others in physical astronomy has been possible only by the use of the most elaborate developments of some purely mathematical subjects, developments which were made without a thought of such applications.
In Presidential Address British Association for the Advancement of Science, Section A, (1897), Nature, 56, 377.
Science quotes on:  |  Accept (191)  |  Accrue (3)  |  Achieve (66)  |  Advance (280)  |  All (4108)  |  Appear (118)  |  Applicability (6)  |  Application (242)  |  Applied (177)  |  Apply (160)  |  Associate (25)  |  Astronomy (229)  |  Belief (578)  |  Body (537)  |  Build (204)  |  Certainly (185)  |  Chief (97)  |  Choose (112)  |  Complex (188)  |  Condenser (4)  |  Connection (162)  |  Consideration (139)  |  Conspicuous (12)  |  Construction (112)  |  Current (118)  |  Deduce (25)  |  Deem (6)  |  Develop (268)  |  Development (422)  |  Difficult (246)  |  Discontinuous (6)  |  Discussion (72)  |  Domain (69)  |  Dominate (20)  |  Dynamics (9)  |  Elaborate (28)  |  Electrostatic (7)  |  Electrostatics (6)  |  Emphasize (23)  |  Equation (132)  |  Extension (59)  |  Extremely (16)  |  Far (154)  |  Fluid (51)  |  Fluid Motion (2)  |  Function (228)  |  Functional (10)  |  General (511)  |  Geometrical (10)  |  Guide (97)  |  Heavy (23)  |  Hydrodynamics (5)  |  Idea (843)  |  Important (209)  |  Initiate (13)  |  Instance (33)  |  Interest (386)  |  Interesting (153)  |  Interpret (19)  |  Interpreting (5)  |  Introduce (63)  |  Investigation (230)  |  Issue (42)  |  Knowledge (1529)  |  Count Joseph-Louis de Lagrange (26)  |  Last (426)  |  Least (75)  |  Let (61)  |  Map (44)  |  Mathematician (387)  |  Mathematics (1328)  |  Merely (316)  |  Method (505)  |  Methods (204)  |  More (2559)  |  Most (1731)  |  Motion (310)  |  Natural (796)  |  Opinion (281)  |  Other (2236)  |  Paper (182)  |  Particularly (21)  |  Phenomenon (318)  |  Physical (508)  |  Plan (117)  |  Henri Poincaré (96)  |  Portion (84)  |  Possible (552)  |  Practical (200)  |  Principle (507)  |  Property (168)  |  Pure (291)  |  Pure Mathematics (67)  |  Purely (109)  |  Question (621)  |  Refine (8)  |  Regard (305)  |  Region (36)  |  Relation (157)  |  Representation (53)  |  Result (677)  |  Rotate (8)  |  Score (8)  |  Similar (36)  |  Sole (49)  |  Subject (521)  |  Substantial (24)  |  Supreme (71)  |  Theory (970)  |  Thought (953)  |  Time (1877)  |  Title (18)  |  Turn (447)  |  Turned Out (4)  |  Two (937)  |  Unwise (4)  |  Use (766)  |  Variable (34)  |  Various (200)  |  Work (1351)  |  Year (933)

Today it is no longer questioned that the principles of the analysts are the more far-reaching. Indeed, the synthesists lack two things in order to engage in a general theory of algebraic configurations: these are on the one hand a definition of imaginary elements, on the other an interpretation of general algebraic concepts. Both of these have subsequently been developed in synthetic form, but to do this the essential principle of synthetic geometry had to be set aside. This principle which manifests itself so brilliantly in the theory of linear forms and the forms of the second degree, is the possibility of immediate proof by means of visualized constructions.
In Riemannsche Flächen (1906), Bd. 1, 234.
Science quotes on:  |  Algebra (113)  |  Analyst (8)  |  Both (493)  |  Brilliant (53)  |  Concept (221)  |  Configuration (7)  |  Construction (112)  |  Definition (221)  |  Degree (276)  |  Develop (268)  |  Do (1908)  |  Element (310)  |  Engage (39)  |  Essential (199)  |  Far-Reaching (8)  |  Form (959)  |  General (511)  |  Geometry (255)  |  Imaginary (16)  |  Immediate (95)  |  Indeed (324)  |  Interpretation (85)  |  Lack (119)  |  Linear (13)  |  Manifest (21)  |  Mean (809)  |  Means (579)  |  More (2559)  |  Order (632)  |  Other (2236)  |  Possibility (164)  |  Principle (507)  |  Proof (287)  |  Question (621)  |  Set (394)  |  Set Aside (4)  |  Subsequent (33)  |  Synthetic (26)  |  Theory (970)  |  Thing (1915)  |  Today (314)  |  Two (937)  |  Visualize (8)

We do not live in a time when knowledge can be extended along a pathway smooth and free from obstacles, as at the time of the discovery of the infinitesimal calculus, and in a measure also when in the development of projective geometry obstacles were suddenly removed which, having hemmed progress for a long time, permitted a stream of investigators to pour in upon virgin soil. There is no longer any browsing along the beaten paths; and into the primeval forest only those may venture who are equipped with the sharpest tools.
In 'Mathematisches und wissenschaftliches Denken', Jahresbericht der Deutschen Mathematiker Vereinigung, Bd. 11, 55. In Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 91.
Science quotes on:  |  Browse (2)  |  Calculus (65)  |  Development (422)  |  Discovery (780)  |  Do (1908)  |  Equipped (17)  |  Extend (128)  |  Forest (150)  |  Free (232)  |  Geometry (255)  |  Infinitesimal (29)  |  Investigation (230)  |  Investigator (67)  |  Knowledge (1529)  |  Live (628)  |  Long (790)  |  Measure (232)  |  Obstacle (42)  |  Path (144)  |  Pathway (15)  |  Primeval (15)  |  Progress (465)  |  Projective Geometry (3)  |  Research (664)  |  Sharp (14)  |  Smooth (32)  |  Soil (86)  |  Stream (81)  |  Suddenly (88)  |  Time (1877)  |  Tool (117)  |  Venture (18)  |  Virgin (9)

We may see how unexpectedly recondite parts of pure mathematics may bear upon physical science, by calling to mind the circumstance that Fresnel obtained one of the most curious confirmations of the theory (the laws of Circular Polarization by reflection) through an interpretation of an algebraical expression, which, according to the original conventional meaning of the symbols, involved an impossible quantity.
In History of Scientific Ideas, Bk. 2, chap. 14, sect. 8.
Science quotes on:  |  Accord (36)  |  According (237)  |  Algebra (113)  |  Bear (159)  |  Call (769)  |  Circular (19)  |  Circumstance (136)  |  Confirmation (22)  |  Conventional (30)  |  Curious (91)  |  Expression (175)  |  Impossible (251)  |  Interpretation (85)  |  Involve (90)  |  Involved (90)  |  Law (894)  |  Mathematics (1328)  |  Mean (809)  |  Meaning (233)  |  Mind (1338)  |  Most (1731)  |  Obtain (163)  |  Original (58)  |  Part (222)  |  Physical (508)  |  Physical Science (101)  |  Polarization (4)  |  Pure (291)  |  Pure Mathematics (67)  |  Quantity (132)  |  Recondite (8)  |  Reflection (90)  |  Science (3879)  |  See (1081)  |  Symbol (93)  |  Theory (970)  |  Through (849)  |  Unexpected (52)

With the extension of mathematical knowledge will it not finally become impossible for the single investigator to embrace all departments of this knowledge? In answer let me point out how thoroughly it is ingrained in mathematical science that every real advance goes hand in hand with the invention of sharper tools and simpler methods which, at the same time, assist in understanding earlier theories and in casting aside some more complicated developments.
In 'Mathematical Problems', Lecture at the International Congress of Mathematics, Paris, (8 Aug 1900). Translated by Dr. Maby Winton Newson in Bulletin of the American Mathematical Society (1902), 8, 479. As quoted and cited in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath's Quotation-book (1914), 94-95. It is reprinted in Jeremy Gray, The Hilbert Challenge (2000), 282.
Science quotes on:  |  Advance (280)  |  All (4108)  |  Answer (366)  |  Assist (9)  |  Become (815)  |  Branch (150)  |  Cast (66)  |  Casting (10)  |  Complicated (115)  |  Department (92)  |  Development (422)  |  Early (185)  |  Easily (35)  |  Embrace (46)  |  Extension (59)  |  Finally (26)  |  Find (998)  |  Hand In Hand (4)  |  Impossible (251)  |  Individual (404)  |  Ingrained (5)  |  Invention (369)  |  Investigator (67)  |  Knowledge (1529)  |  Let (61)  |  Mathematics (1328)  |  Method (505)  |  Methods (204)  |  More (2559)  |  Point (580)  |  Point Out (8)  |  Possible (552)  |  Real (149)  |  Same (157)  |  Science (3879)  |  Sharp (14)  |  Simple (406)  |  Simpler (8)  |  Single (353)  |  Theory (970)  |  Thoroughly (67)  |  Time (1877)  |  Tool (117)  |  Understand (606)  |  Understanding (513)  |  Various (200)  |  Will (2355)

“Divide et impera” is as true in algebra as in statecraft; but no less true and even more fertile is the maxim “auge et impera”.The more to do or to prove, the easier the doing or the proof.
In 'Proof of the Fundamental Theorem of Invariants', Philosophic Magazine (1878), 186. In Collected Mathematical Papers, 3, 126. [The Latin phrases, “Divide/auge et impera” translate as “Divide/increase and rule”.
Science quotes on:  |  Algebra (113)  |  Divide (75)  |  Do (1908)  |  Doing (280)  |  Easier (53)  |  Easy (204)  |  Fertile (29)  |  Increase (210)  |  Less (103)  |  Maxim (17)  |  More (2559)  |  Proof (287)  |  Prove (250)  |  Rule (294)  |  True (212)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton



who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.