Celebrating 20 Years on the Web
TODAY IN SCIENCE HISTORY ®
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by forces impressed.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index K > Category: Kinetic

Kinetic Quotes (12 quotes)

As the nineteenth century drew to a close, scientists could reflect with satisfaction that they had pinned down most of the mysteries of the physical world: electricity, magnetism, gases, optics, acoustics, kinetics and statistical mechanics ... all had fallen into order before the. They had discovered the X ray, the cathode ray, the electron, and radioactivity, invented the ohm, the watt, the Kelvin, the joule, the amp, and the little erg.
A Short History of Nearly Everything. In Clifford A. Pickover, Archimedes to Hawking: Laws of Science and the Great Minds Behind Them (2008), 172.
Science quotes on:  |  Acoustic (3)  |  Acoustics (4)  |  All (4107)  |  Cathode (2)  |  Century (310)  |  Close (69)  |  Discover (553)  |  Down (455)  |  Draw (137)  |  Electricity (160)  |  Electron (95)  |  Fall (230)  |  Gas (83)  |  Invent (51)  |  Joule (2)  |  Little (708)  |  Magnetism (41)  |  Mechanic (119)  |  Mechanics (132)  |  Most (1729)  |  Mystery (178)  |  Nineteenth (6)  |  Ohm (5)  |  Optics (23)  |  Order (632)  |  Physical (508)  |  Physical World (28)  |  Pin (18)  |  Radioactivity (30)  |  Ray (114)  |  Reflect (32)  |  Satisfaction (74)  |  Scientist (825)  |  Statistical Mechanics (7)  |  World (1778)  |  X (2)

Engineering is the science of economy, of conserving the energy, kinetic and potential, provided and stored up by nature for the use of man. It is the business of engineering to utilize this energy to the best advantage, so that there may be the least possible waste.
(1908). Quoted, without source, in Appendix A, 'Some Definitions of Engineering' in Theodore Jesse Hoover and John Charles Lounsbury Fish, The Engineering Profession (1941), 463.
Science quotes on:  |  Advantage (135)  |  Best (459)  |  Business (149)  |  Conservation (168)  |  Economy (55)  |  Energy (346)  |  Engineering (176)  |  Least (75)  |  Man (2249)  |  Nature (1928)  |  Possible (554)  |  Potential (69)  |  Science (3880)  |  Store (48)  |  Use (766)  |  Utilization (15)  |  Waste (101)

I am now convinced that we have recently become possessed of experimental evidence of the discrete or grained nature of matter, which the atomic hypothesis sought in vain for hundreds and thousands of years. The isolation and counting of gaseous ions, on the one hand, which have crowned with success the long and brilliant researches of J.J. Thomson, and, on the other, agreement of the Brownian movement with the requirements of the kinetic hypothesis, established by many investigators and most conclusively by J. Perrin, justify the most cautious scientist in now speaking of the experimental proof of the atomic nature of matter, The atomic hypothesis is thus raised to the position of a scientifically well-founded theory, and can claim a place in a text-book intended for use as an introduction to the present state of our knowledge of General Chemistry.
In Grundriss der allgemeinen Chemie (4th ed., 1909), Preface, as cited by Erwin N. Hiebert and Hans-Gunther Korber in article on Ostwald in Charles Coulston Gillespie (ed.), Dictionary of Scientific Biography Supplement 1, Vol 15-16, 464.
Science quotes on:  |  Agreement (53)  |  Atom (358)  |  Become (815)  |  Book (394)  |  Brilliant (53)  |  Robert Brown (2)  |  Caution (24)  |  Chemistry (355)  |  Claim (146)  |  Conviction (98)  |  Counting (26)  |  Crown (38)  |  Discrete (11)  |  Evidence (248)  |  Experiment (696)  |  Experimental (192)  |  Gas (83)  |  General (511)  |  Grain (50)  |  Granular (4)  |  Hundred (228)  |  Hypothesis (296)  |  Introduction (35)  |  Investigator (67)  |  Ion (21)  |  Isolation (31)  |  Knowledge (1536)  |  Long (789)  |  Matter (801)  |  Most (1729)  |  Movement (155)  |  Nature (1928)  |  Other (2236)  |  Jean Perrin (2)  |  Possess (156)  |  Possession (65)  |  Present (620)  |  Proof (289)  |  Recent (77)  |  Requirement (63)  |  Research (677)  |  Scientist (825)  |  Seeking (31)  |  Speaking (119)  |  State (491)  |  Success (303)  |  Text-Book (5)  |  Theory (972)  |  Sir J.J. Thomson (18)  |  Thousand (331)  |  Use (766)  |  Vain (83)  |  Year (932)

I think a strong claim can be made that the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well constructed theory is in some respects undoubtedly an artistic production. A fine example is the famous Kinetic Theory of Maxwell. ... The theory of relativity by Einstein, quite apart from any question of its validity, cannot but be regarded as a magnificent work of art.
Responding to the toast, 'Science!' at the Royal Academy of the Arts in 1932.)
Quoted in Lawrence Badash, 'Ernest Rutherford and Theoretical Physics,' in Robert Kargon and Peter Achinstein (eds.) Kelvin's Baltimore Lectures and Modern Theoretical Physics: Historical and Philosophical Perspectives (1987), 352.
Science quotes on:  |  Academy (35)  |  According (237)  |  Art (657)  |  Artistic (23)  |  Aspect (124)  |  Assumption (92)  |  Best (459)  |  Build (204)  |  Certain (550)  |  Claim (146)  |  Construct (124)  |  Discovery (785)  |  Edifice (26)  |  Einstein (101)  |  Albert Einstein (607)  |  Form (960)  |  Imagination (328)  |  Kinetic Theory (7)  |  Magnificent (43)  |  Maxwell (42)  |  James Clerk Maxwell (87)  |  Physical (508)  |  Physical Science (101)  |  Power (747)  |  Process (423)  |  Production (183)  |  Question (622)  |  Regard (304)  |  Relativity (88)  |  Respect (207)  |  Royal (56)  |  Royal Academy (3)  |  Rule (295)  |  Science (3880)  |  Scientific (940)  |  Stately (12)  |  Step (231)  |  Step By Step (11)  |  Strong (174)  |  Theorist (44)  |  Theory (972)  |  Theory Of Relativity (33)  |  Think (1086)  |  Toast (8)  |  Understood (156)  |  Validity (47)  |  Work (1351)

In the discussion of the. energies involved in the deformation of nuclei, the concept of surface tension of nuclear matter has been used and its value had been estimated from simple considerations regarding nuclear forces. It must be remembered, however, that the surface tension of a charged droplet is diminished by its charge, and a rough estimate shows that the surface tension of nuclei, decreasing with increasing nuclear charge, may become zero for atomic numbers of the order of 100. It seems therefore possible that the uranium nucleus has only small stability of form, and may, after neutron capture, divide itself into two nuclei of roughly equal size (the precise ratio of sizes depending on liner structural features and perhaps partly on chance). These two nuclei will repel each other and should gain a total kinetic energy of c. 200 Mev., as calculated from nuclear radius and charge. This amount of energy may actually be expected to be available from the difference in packing fraction between uranium and the elements in the middle of the periodic system. The whole 'fission' process can thus be described in an essentially classical way, without having to consider quantum-mechanical 'tunnel effects', which would actually be extremely small, on account of the large masses involved.
[Co-author with Otto Robert Frisch]
Lise Meitner and O. R. Frisch, 'Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction', Nature (1939), 143, 239.
Science quotes on:  |  Account (192)  |  Amount (151)  |  Atomic Number (3)  |  Author (168)  |  Available (78)  |  Become (815)  |  Chance (239)  |  Charge (60)  |  Classical (46)  |  Concept (221)  |  Consider (416)  |  Consideration (139)  |  Deformation (3)  |  Difference (337)  |  Discussion (73)  |  Divide (76)  |  Effect (394)  |  Element (310)  |  Energy (346)  |  Estimate (57)  |  Expect (201)  |  Fission (10)  |  Force (488)  |  Form (960)  |  Gain (145)  |  Involved (90)  |  Kinetic Energy (3)  |  Large (394)  |  Matter (801)  |  Mechanical (140)  |  Must (1526)  |  Neutron (21)  |  Nuclear (107)  |  Nucleus (51)  |  Number (701)  |  Order (632)  |  Other (2236)  |  Possible (554)  |  Precise (68)  |  Process (423)  |  Quantum (117)  |  Quantum Theory (66)  |  Radius (4)  |  Ratio (39)  |  Remember (179)  |  Repulsion (7)  |  Show (346)  |  Simple (406)  |  Small (479)  |  Stability (25)  |  Structural (29)  |  Surface (209)  |  Surface Tension (2)  |  System (537)  |  Tension (24)  |  Total (94)  |  Tunnel (12)  |  Two (937)  |  Uranium (20)  |  Value (368)  |  Way (1216)  |  Whole (738)  |  Will (2354)  |  Zero (37)

It is a remarkable fact that the second law of thermodynamics has played in the history of science a fundamental role far beyond its original scope. Suffice it to mention Boltzmann’s work on kinetic theory, Planck’s discovery of quantum theory or Einstein’s theory of spontaneous emission, which were all based on the second law of thermodynamics.
From Nobel lecture, 'Time, Structure and Fluctuations', in Tore Frängsmyr and Sture Forsén (eds.), Nobel Lectures, Chemistry 1971-1980, (1993), 263.
Science quotes on:  |  All (4107)  |  Basis (173)  |  Beyond (308)  |  Ludwig Eduard Boltzmann (25)  |  Discovery (785)  |  Einstein (101)  |  Albert Einstein (607)  |  Emission (17)  |  Fact (1212)  |  Fundamental (251)  |  History (675)  |  History Of Science (64)  |  Kinetic Theory (7)  |  Law (895)  |  Mention (82)  |  Max Planck (64)  |  Quantum (117)  |  Quantum Theory (66)  |  Remarkable (48)  |  Role (85)  |  Science (3880)  |  Scope (44)  |  Second Law Of Thermodynamics (14)  |  Spontaneous (27)  |  Theory (972)  |  Thermodynamics (40)  |  Work (1351)

Nobody, I suppose, could devote many years to the study of chemical kinetics without being deeply conscious of the fascination of time and change: this is something that goes outside science into poetry; but science, subject to the rigid necessity of always seeking closer approximations to the truth, itself contains many poetical elements.
From Nobel Lecture (11 Dec 1956), collected in Nobel Lectures in Chemistry (1999), 474.
Science quotes on:  |  Approximation (31)  |  Being (1278)  |  Change (595)  |  Chemical (292)  |  Closer (43)  |  Conscious (45)  |  Contain (68)  |  Element (310)  |  Fascination (32)  |  Necessity (191)  |  Nobody (104)  |  Outside (141)  |  Poetry (144)  |  Rigid (24)  |  Science (3880)  |  Science And Art (186)  |  Seek (213)  |  Something (719)  |  Study (656)  |  Subject (522)  |  Suppose (156)  |  Time (1877)  |  Truth (1062)  |  Year (932)

O. Hahn and F. Strassmann have discovered a new type of nuclear reaction, the splitting into two smaller nuclei of the nuclei of uranium and thorium under neutron bombardment. Thus they demonstrated the production of nuclei of barium, lanthanum, strontium, yttrium, and, more recently, of xenon and caesium. It can be shown by simple considerations that this type of nuclear reaction may be described in an essentially classical way like the fission of a liquid drop, and that the fission products must fly apart with kinetic energies of the order of hundred million electron-volts each.
'Products of the Fission of the Urarium Nucleus', Nature (1939), 143, 471.
Science quotes on:  |  Barium (4)  |  Bombardment (3)  |  Classical (46)  |  Consideration (139)  |  Demonstration (114)  |  Discover (553)  |  Drop (76)  |  Electron (95)  |  Fission (10)  |  Fly (146)  |  Otto Hahn (2)  |  Hundred (228)  |  Kinetic Energy (3)  |  Lanthanum (2)  |  Liquid (50)  |  More (2559)  |  Must (1526)  |  Neutron (21)  |  New (1217)  |  Nuclear (107)  |  Nuclear Reaction (2)  |  Nucleus (51)  |  Order (632)  |  Product (160)  |  Production (183)  |  Reaction (104)  |  Simple (406)  |  Strontium (2)  |  Thorium (5)  |  Two (937)  |  Type (167)  |  Uranium (20)  |  Way (1216)  |  Xenon (5)  |  Yttrium (3)

The kinetic concept of motion in classical theory will have to undergo profound modifications. (That is why I also avoided the term “orbit” in my paper throughout.) … We must not bind the atoms in the chains of our prejudices—to which, in my opinion, also belongs the assumption that electron orbits exist in the sense of ordinary mechanics—but we must, on the contrary, adapt our concepts to experience.
Letter to Niels Bohr (12 Dec 1924), in K. von Meyenn (ed.), Wolfgang Pauli - Wissenschaftliche Korrespondenz (1979), Vol. 1, 188. Quoted and cited in Daniel Greenberger, Klaus Hentschel and Friedel Weinert, Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy (2009), 615.
Science quotes on:  |  Adapt (66)  |  Assumption (92)  |  Atom (358)  |  Avoid (116)  |  Belong (162)  |  Chain (50)  |  Classical (46)  |  Classical Theory (2)  |  Concept (221)  |  Contrary (142)  |  Electron (95)  |  Exist (444)  |  Experience (470)  |  Mechanic (119)  |  Mechanics (132)  |  Model (102)  |  Modification (55)  |  Motion (312)  |  Must (1526)  |  Opinion (281)  |  Orbit (82)  |  Ordinary (160)  |  Paper (183)  |  Prejudice (88)  |  Profound (104)  |  Sense (770)  |  Term (349)  |  Theory (972)  |  Throughout (98)  |  Why (491)  |  Will (2354)

The results have exhibited one striking feature which has been frequently emphasized, namely that at high pressures all twelve liquids become more nearly like each other. This suggests that it might be useful in developing a theory of liquids to arbitrarily construct a 'perfect liquid' and to discuss its properties. Certainly the conception of a 'perfect gas' has been of great service in the kinetic theory of gases; and the reason is that all actual gases approximate closely to the 'perfect gas.' In the same way, at high pressures all liquids approximate to one and the same thing, which may be called by analogy the 'perfect liquid.' It seems to offer at least a promising line of attack to discuss the properties of this 'perfect liquid,' and then to invent the simplest possible mechanism to explain them.
'Thermodynamic Properties of Twelve Liquids Between 200 and 800 and up to 1200 KGM. Per Sq. Cm.', Memoirs of the American Academy of Arts and Sciences, 1913, 49, 113.
Science quotes on:  |  Actual (117)  |  All (4107)  |  Analogy (71)  |  Approximate (25)  |  Attack (84)  |  Become (815)  |  Call (769)  |  Certainly (185)  |  Conception (154)  |  Construct (124)  |  Explain (322)  |  Gas (83)  |  Great (1575)  |  High (363)  |  Kinetic Theory (7)  |  Liquid (50)  |  Mechanism (96)  |  More (2559)  |  Nearly (137)  |  Offer (141)  |  Other (2236)  |  Perfect (216)  |  Possible (554)  |  Pressure (63)  |  Reason (744)  |  Result (678)  |  Service (110)  |  Striking (48)  |  Theory (972)  |  Thing (1915)  |  Useful (250)  |  Way (1216)

With thermodynamics, one can calculate almost everything crudely; with kinetic theory, one can calculate fewer things, but more accurately; and with statistical mechanics, one can calculate almost nothing exactly.
Edward B. Stuart, Alan J. Brainard and Benjamin Gal-Or (eds.), A Critical Review of Thermodynamics (1970), 205.
Science quotes on:  |  Calculate (54)  |  Calculation (128)  |  Crude (31)  |  Everything (476)  |  Kinetic Theory (7)  |  Mechanic (119)  |  Mechanics (132)  |  Mechanism (96)  |  More (2559)  |  Nothing (969)  |  Statistical Mechanics (7)  |  Statistics (157)  |  Theory (972)  |  Thermodynamics (40)  |  Thing (1915)

Work done on any system of bodies (in Newton’s statement, the parts of any machine) has its equivalent in work done against friction, molecular forces, or gravity, if there be no acceleration; but if there be acceleration, part of the work is expended in overcoming the resistance to acceleration, and the additional kinetic energy developed is equivalent to the work so spent.
In William Thomson and Peter Guthrie Tait, Treatise on Natural Philosophy (1867), Vol. 1, 186.
Science quotes on:  |  Acceleration (12)  |  Against (332)  |  Body (537)  |  Conservation Of Energy (29)  |  Develop (268)  |  Energy (346)  |  Equivalent (45)  |  Force (488)  |  Friction (14)  |  Gravity (133)  |  Kinetic Energy (3)  |  Machine (259)  |  Molecular Force (2)  |  Sir Isaac Newton (335)  |  Resistance (40)  |  Spent (85)  |  Statement (142)  |  System (537)  |  Work (1351)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.