TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 24 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Nature does nothing in vain when less will serve; for Nature is pleased with simplicity and affects not the pomp of superfluous causes.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index C > Category: Condensation

Condensation Quotes (12 quotes)

Accordingly the primordial state of things which I picture is an even distribution of protons and electrons, extremely diffuse and filling all (spherical) space, remaining nearly balanced for an exceedingly long time until its inherent instability prevails. We shall see later that the density of this distribution can be calculated; it was about one proton and electron per litre. There is no hurry for anything to begin to happen. But at last small irregular tendencies accumulate, and evolution gets under way. The first stage is the formation of condensations ultimately to become the galaxies; this, as we have seen, started off an expansion, which then automatically increased in speed until it is now manifested to us in the recession of the spiral nebulae.
As the matter drew closer together in the condensations, the various evolutionary processes followed—evolution of stars, evolution of the more complex elements, evolution of planets and life.
The Expanding Universe (1933), 56-57.
Science quotes on:  |  Become (821)  |  Begin (275)  |  Closer (43)  |  Complex (202)  |  Density (25)  |  Distribution (51)  |  Electron (96)  |  Element (322)  |  Evolution (635)  |  Exceedingly (28)  |  Expansion (43)  |  First (1302)  |  Follow (389)  |  Formation (100)  |  Galaxies (29)  |  Happen (282)  |  Hurry (16)  |  Inherent (43)  |  Last (425)  |  Life (1870)  |  Long (778)  |  Matter (821)  |  More (2558)  |  Nearly (137)  |  Picture (148)  |  Planet (402)  |  Prevail (47)  |  Proton (23)  |  Remaining (45)  |  See (1094)  |  Small (489)  |  Space (523)  |  Speed (66)  |  Spiral (19)  |  Stage (152)  |  Star (460)  |  Stars (304)  |  Start (237)  |  State (505)  |  Thing (1914)  |  Time (1911)  |  Together (392)  |  Ultimately (56)  |  Various (205)  |  Way (1214)

Anaximenes ... said that infinite air was the principle, from which the things that are becoming, and that are, and that shall be, and gods and things divine, all come into being, and the rest from its products. The form of air is of this kind: whenever it is most equable it is invisible to sight, but is revealed by the cold and the hot and the damp and by movement. It is always in motion; for things that change do not change unless there be movement. Through becoming denser or finer it has different appearances; for when it is dissolved into what is finer it becomes fire, while winds, again, are air that is becoming condensed, and cloud is produced from air by felting. When it is condensed still more, water is produced; with a further degree of condensation earth is produced, and when condensed as far as possible, stones. The result is that the most influential components of the generation are opposites, hot and cold.
Hippolytus, Refutation, 1.7.1. In G. S. Kirk, J. E. Raven and M. Schofield (eds.), The Presocratic Philosophers: A Critical History with a Selection of Texts (1983), p. 145.
Science quotes on:  |  Air (366)  |  Anaximander (5)  |  Appearance (145)  |  Become (821)  |  Becoming (96)  |  Being (1276)  |  Change (639)  |  Cloud (111)  |  Cold (115)  |  Component (51)  |  Degree (277)  |  Different (595)  |  Divine (112)  |  Do (1905)  |  Earth (1076)  |  Fire (203)  |  Form (976)  |  Generation (256)  |  God (776)  |  Hot (63)  |  Infinite (243)  |  Invisible (66)  |  Kind (564)  |  Matter (821)  |  More (2558)  |  Most (1728)  |  Motion (320)  |  Movement (162)  |  Opposite (110)  |  Possible (560)  |  Principle (530)  |  Produced (187)  |  Product (166)  |  Rest (287)  |  Result (700)  |  Reveal (152)  |  Revealed (59)  |  Sight (135)  |  Still (614)  |  Stone (168)  |  Thing (1914)  |  Through (846)  |  Water (503)  |  Whenever (81)  |  Wind (141)

I had gone on a walk on a fine Sabbath afternoon. I had entered the Green [of Glasgow] by the gate at the foot of Charlotte Street—had passed the old washing-house. I was thinking upon the engine at the time, and had gone as far as the herd's house, when the idea came into my mind that as steam was an elastic body it would rush into a vacuum, and if a communication were made between the cylinder and an exhausted vessel it would rush into it, and might be there condensed without cooling the cylinder. I then saw that I must get rid of the condensed steam and injection water if I used a jet, as in Newcomen's engine. Two ways of doing this occurred to me. First, the water might be run off by a descending pipe, if an outlet could be got at the depth of 35 or 36 feet, and any air might be extracted by a small pump. The second was to make the pump large enough to extract both water and air. ... I had not walked further than the Golf-house when the whole thing was arranged in my mind.
[In Robert Hart's words, a recollection of the description of Watt's moment of inspiration, in May 1765, for improving Thomas Newcomen's steam engine.]
In Robert Hart, 'Reminiscences of James Watt' (read 2 Nov 1857), Transactions of the Glasgow Archaeological Society (1859), Vol. 1, 1. Note that these are not the verbatim words of James Watt, but are only a recollection of them by Robert Hart, who is quoting as best he can from memory of a conversation he and his brother had with James Watt that took place over 43 years previously. In his Reminiscences, Hart explains, “I have accordingly thrown together the following brief narrative:— As these meetings took place forty-three years since, many observations that were made at the time may have escaped me at present; yet, when the same subjects are touched on, I have as distinct recollection of his treatment of them as if it were yesterday.”
Science quotes on:  |  Air (366)  |  Body (557)  |  Both (496)  |  Communication (101)  |  Cooling (10)  |  Cylinder (11)  |  Depth (97)  |  Doing (277)  |  Elastic (2)  |  Engine (99)  |  Enough (341)  |  Enter (145)  |  Exhaustion (18)  |  Extract (40)  |  First (1302)  |  Gate (33)  |  Green (65)  |  House (143)  |  Idea (881)  |  Improvement (117)  |  Injection (9)  |  Inspiration (80)  |  Invention (400)  |  Large (398)  |  Mind (1377)  |  Moment (260)  |  Must (1525)  |  Thomas Newcomen (2)  |  Old (499)  |  Pass (241)  |  Run (158)  |  Saw (160)  |  Small (489)  |  Steam (81)  |  Steam Engine (47)  |  Thing (1914)  |  Thinking (425)  |  Time (1911)  |  Two (936)  |  Vacuum (41)  |  Vessel (63)  |  Walk (138)  |  Water (503)  |  Way (1214)  |  Whole (756)  |  Word (650)

If the views we have ventured to advance be correct, we may almost consider {greek words} of the ancients to be realised in hydrogen, an opinion, by the by, not altogether new. If we actually consider the specific gravities of bodies in their gaseous state to represent the number of volumes condensed into one; or in other words, the number of the absolute weight of a single volume of the first matter ({greek words}) which they contain, which is extremely probable, multiples in weight must always indicate multiples in volume, and vice versa; and the specific gravities, or absolute weights of all bodies in a gaseous state, must be multiples of the specific gravity or absolute weight of the first matter, ({Greek words}), because all bodies in the gaseous state which unite with one another unite with reference to their volume.
'Correction of a Mistake in the Essay on the Relation between the Specific Gravities of Bodies in their Gaseous State and the Weights of their Atoms', Annals of Philosophy (1816), 7, 113.
Science quotes on:  |  Absolute (153)  |  Advance (298)  |  Advancement (63)  |  Ancient (198)  |  Body (557)  |  Consider (428)  |  Consideration (143)  |  Correctness (12)  |  First (1302)  |  Gas (89)  |  Gravity (140)  |  Greek (109)  |  Hydrogen (80)  |  Indicate (62)  |  Matter (821)  |  Multiple (19)  |  Must (1525)  |  New (1273)  |  Number (710)  |  Opinion (291)  |  Other (2233)  |  Realization (44)  |  Represent (157)  |  Single (365)  |  Specific (98)  |  Specific Gravity (2)  |  State (505)  |  Unite (43)  |  Venture (19)  |  Vice (42)  |  View (496)  |  Volume (25)  |  Weight (140)  |  Word (650)

In early life I had felt a strong desire to devote myself to the experimental study of nature; and, happening to see a glass containing some camphor, portions of which had been caused to condense in very beautiful crystals on the illuminated side, I was induced to read everything I could obtain respecting the chemical and mechanical influences of light, adhesion, and capillary attraction.
In preface to Scientific Memoirs (1878), xii.
Science quotes on:  |  Adhesion (6)  |  Attraction (61)  |  Beautiful (271)  |  Beauty (313)  |  Capillary (4)  |  Chemical (303)  |  Chemistry (376)  |  Crystal (71)  |  Desire (212)  |  Devotion (37)  |  Early (196)  |  Everything (489)  |  Experiment (736)  |  Experimental (193)  |  Glass (94)  |  Happening (59)  |  Illumination (15)  |  Influence (231)  |  Life (1870)  |  Light (635)  |  Mechanical (145)  |  Mechanics (137)  |  Myself (211)  |  Nature (2017)  |  Obtain (164)  |  Portion (86)  |  Read (308)  |  Reading (136)  |  See (1094)  |  Side (236)  |  Strong (182)  |  Study (701)

MOLECULE, n. The ultimate, indivisible unit of matter. It is distinguished from the corpuscle, also the ultimate, indivisible unit of matter, by a closer resemblance to the atom, also the ultimate, indivisible unit of matter. Three great scientific theories of the structure of the universe are the molecular, the corpuscular and the atomic. A fourth affirms, with Haeckel, the condensation or precipitation of matter from ether—whose existence is proved by the condensation or precipitation. The present trend of scientific thought is toward the theory of ions. The ion differs from the molecule, the corpuscle and the atom in that it is an ion. A fifth theory is held by idiots, but it is doubtful if they know any more about the matter than the others.
The Collected Works of Ambrose Bierce (1911), Vol. 7, The Devil's Dictionary,  220-221.
Science quotes on:  |  Atom (381)  |  Closer (43)  |  Corpuscle (14)  |  Differ (88)  |  Distinguish (168)  |  Distinguished (84)  |  Doubtful (30)  |  Ether (37)  |  Existence (481)  |  Great (1610)  |  Humour (116)  |  Idiot (22)  |  Indivisible (22)  |  Ion (21)  |  Know (1538)  |  Matter (821)  |  Molecule (185)  |  More (2558)  |  Other (2233)  |  Precipitation (7)  |  Present (630)  |  Resemblance (39)  |  Scientific (955)  |  Scientific Theory (24)  |  Scientific Thought (17)  |  Structure (365)  |  Theory (1015)  |  Thought (995)  |  Trend (23)  |  Ultimate (152)  |  Universe (900)

On the terrace of the Pepiniere, the 150 pupils of the Institut Chemique talk chemistry as they leave the auditoria and the laboratory. The echoes of the magnificent public garden of the city of Nancy make the words reverberate; coupling, condensation, grignardization. Moreover, their clothes stay impregnated with strong and characteristic odours; we follow the initiates of Hermes by their scent. In such an environment, how is it possible not to be productive?
Charles Courtot, 'Notice sur la vie de Victor Grignard', Bulletin Societé Chemie, 1936, 3, 1445. Trans. in Mary Jo Nye, Science in the Provinces (1986),184.
Science quotes on:  |  Characteristic (154)  |  Chemistry (376)  |  City (87)  |  Environment (239)  |  Follow (389)  |  Garden (64)  |  Initiate (13)  |  Laboratory (214)  |  Magnificent (46)  |  Possible (560)  |  Productive (37)  |  Pupil (62)  |  Scent (7)  |  Strong (182)  |  Word (650)

Salt water when it turns into vapour becomes sweet, and the vapour does not form salt water when it condenses again. This I know by experiment. The same thing is true in every case of the kind: wine and all fluids that evaporate and condense back into a liquid state become water. They all are water modified by a certain admixture, the nature of which determines their flavour.
[Aristotle describing his distillation experiment.]
Aristotle
Meteorology (350 B.C.), Book II, translated by E. W. Webster. Internet Classics Archive, (classics.mit.edu).
Science quotes on:  |  Admixture (2)  |  Back (395)  |  Become (821)  |  Brine (3)  |  Certain (557)  |  Desalination (4)  |  Determine (152)  |  Distillation (11)  |  Evaporation (7)  |  Experiment (736)  |  Fluid (54)  |  Form (976)  |  Kind (564)  |  Know (1538)  |  Liquid (50)  |  Nature (2017)  |  Salt (48)  |  Solution (282)  |  State (505)  |  Sweet (40)  |  Thing (1914)  |  Turn (454)  |  Vapour (16)  |  Water (503)  |  Wine (39)

Scientific discovery, or the formulation of scientific theory, starts in with the unvarnished and unembroidered evidence of the senses. It starts with simple observation—simple, unbiased, unprejudiced, naive, or innocent observation—and out of this sensory evidence, embodied in the form of simple propositions or declarations of fact, generalizations will grow up and take shape, almost as if some process of crystallization or condensation were taking place. Out of a disorderly array of facts, an orderly theory, an orderly general statement, will somehow emerge.
In 'Is the Scientific Paper Fraudulent?', The Saturday Review (1 Aug 1964), 42.
Science quotes on:  |  Array (5)  |  Crystallization (2)  |  Declaration (10)  |  Discovery (837)  |  Embody (18)  |  Emerge (24)  |  Evidence (267)  |  Fact (1257)  |  Facts (553)  |  Form (976)  |  Formulation (37)  |  General (521)  |  Generalization (61)  |  Grow (247)  |  Innocent (13)  |  Naive (13)  |  Observation (593)  |  Order (638)  |  Orderly (38)  |  Process (439)  |  Proposition (126)  |  Scientific (955)  |  Scientific Theory (24)  |  Sense (785)  |  Sensory (16)  |  Shape (77)  |  Simple (426)  |  Somehow (48)  |  Start (237)  |  Statement (148)  |  Theory (1015)  |  Unbiased (7)  |  Unprejudiced (3)  |  Unvarnished (2)  |  Will (2350)

The condensed air becomes attached to [the metallic calx], and adheres little by little to the smallest of its particles: thus its weight increases from the beginning to the end: but when all is saturated, it can take up no more.
Jean Rey
The Increase in Weight of Tin and Lead on Calcination (1630), Alembic Club Reprint (1895), 52.
Science quotes on:  |  Adherence (2)  |  Air (366)  |  Attach (57)  |  Attached (36)  |  Attachment (7)  |  Become (821)  |  Beginning (312)  |  Calcination (4)  |  End (603)  |  Increase (225)  |  Lead (391)  |  Little (717)  |  Metal (88)  |  More (2558)  |  Particle (200)  |  Saturation (9)  |  Small (489)  |  Tin (18)  |  Weight (140)

The first effect of the mind growing cultivated is that processes once multiple get to be performed in a single act. Lazarus has called this the progressive “condensation” of thought. ... Steps really sink from sight. An advanced thinker sees the relations of his topics is such masses and so instantaneously that when he comes to explain to younger minds it is often hard ... Bowditch, who translated and annotated Laplace's Méchanique Céleste, said that whenever his author prefaced a proposition by the words “it is evident,” he knew that many hours of hard study lay before him.
In The Principles of Psychology (1918), Vol. 2, 369-370.
Science quotes on:  |  Act (278)  |  Advanced (12)  |  Author (175)  |   Nathaniel Bowditch (3)  |  Call (781)  |  Cultivation (36)  |  Effect (414)  |  Evident (92)  |  Explain (334)  |  Explanation (246)  |  First (1302)  |  Growing (99)  |  Hard (246)  |  Hour (192)  |  Instantaneous (4)  |  It Is Evident (6)  |  Pierre-Simon Laplace (63)  |  Mind (1377)  |  Multiple (19)  |  Perform (123)  |  Performance (51)  |  Preface (9)  |  Process (439)  |  Progressive (21)  |  Proposition (126)  |  Relation (166)  |  See (1094)  |  Sight (135)  |  Single (365)  |  Sink (38)  |  Sophistication (12)  |  Step (234)  |  Study (701)  |  Thinker (41)  |  Thought (995)  |  Topic (23)  |  Whenever (81)  |  Word (650)  |  Younger (21)

The sun, moving as it does, sets up processes of change and becoming and decay, and by its agency the finest and sweetest water is every day carried up and is dissolved into vapour and rises to the upper region, where it is condensed again by the cold and so returns to the earth. This, as we have said before, is the regular course of nature.
Aristotle
Meteorology (350 B.C.), Book II, translated by E. W. Webster. Internet Classics Archive, (classics.mit.edu).
Science quotes on:  |  Becoming (96)  |  Change (639)  |  Cold (115)  |  Course (413)  |  Decay (59)  |  Earth (1076)  |  Meteorology (36)  |  Nature (2017)  |  Rain (70)  |  Regular (48)  |  Return (133)  |  Rise (169)  |  Set (400)  |  Sun (407)  |  Vapour (16)  |  Water (503)  |  Water Cycle (5)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.