Celebrating 20 Years on the Web
TODAY IN SCIENCE HISTORY ®
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “Environmental extremists ... wouldn’t let you build a house unless it looked like a bird’s nest.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index D > Category: Definitions And Objects Of Mathematics

Definitions and Objects of Mathematics Quotes (33 quotes)

A mathematical science is any body of propositions which is capable of an abstract formulation and arrangement in such a way that every proposition of the set after a certain one is a formal logical consequence of some or all the preceding propositions. Mathematics consists of all such mathematical sciences.
In Lectures on Fundamental Concepts of Algebra and Geometry (1911), 222.
Science quotes on:  |  Abstract (126)  |  All (4107)  |  Arrangement (91)  |  Body (537)  |  Capable (168)  |  Certain (550)  |  Consequence (207)  |  Consist (223)  |  Formal (34)  |  Formulation (36)  |  Logic (287)  |  Mathematics (1333)  |  Precede (23)  |  Proposition (123)  |  Science (3880)  |  Set (394)  |  Way (1216)

Any conception which is definitely and completely determined by means of a finite number of specifications, say by assigning a finite number of elements, is a mathematical conception. Mathematics has for its function to develop the consequences involved in the definition of a group of mathematical conceptions. Interdependence and mutual logical consistency among the members of the group are postulated, otherwise the group would either have to be treated as several distinct groups, or would lie beyond the sphere of mathematics.
In 'Mathematics', Encyclopedia Britannica (9th ed.).
Science quotes on:  |  Assign (13)  |  Beyond (308)  |  Complete (204)  |  Completely (135)  |  Conception (154)  |  Consequence (207)  |  Consistency (31)  |  Consistent (48)  |  Definite (110)  |  Definition (224)  |  Determine (144)  |  Develop (268)  |  Distinct (97)  |  Element (310)  |  Finite (60)  |  Function (229)  |  Group (78)  |  Interdependence (4)  |  Involve (90)  |  Involved (90)  |  Lie (364)  |  Logical (55)  |  Mathematics (1333)  |  Mean (809)  |  Means (580)  |  Member (41)  |  Mutual (53)  |  Number (701)  |  Otherwise (24)  |  Postulate (39)  |  Say (984)  |  Several (32)  |  Specification (7)  |  Sphere (116)  |  Treat (35)

Everything that the greatest minds of all times have accomplished toward the comprehension of forms by means of concepts is gathered into one great science, mathematics.
In 'Pestalozzi's Idee eines A B C der Anschauung', Werke[Kehrbach] (1890), Bd.l, 163. As quoted, cited and translated in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-Book (1914), 5.
Science quotes on:  |  Accomplishment (94)  |  All (4107)  |  Comprehension (66)  |  Concept (221)  |  Everything (476)  |  Form (960)  |  Gather (72)  |  Great (1575)  |  Greatest (329)  |  Mathematics (1333)  |  Mean (809)  |  Means (580)  |  Mind (1339)  |  Science (3880)  |  Time (1877)  |  Toward (45)

First of all, we ought to observe, that mathematical propositions, properly so called, are always judgments a priori, and not empirical, because they carry along with them necessity, which can never be deduced from experience. If people should object to this, I am quite willing to confine my statements to pure mathematics, the very concept of which implies that it does not contain empirical, but only pure knowledge a priori.
In Critique of Pure Reason (1900), 720.
Science quotes on:  |  A Priori (26)  |  All (4107)  |  Call (769)  |  Carry (127)  |  Concept (221)  |  Confine (26)  |  Contain (68)  |  Deduce (25)  |  Empirical (54)  |  Experience (470)  |  First (1284)  |  Imply (17)  |  Judgment (132)  |  Knowledge (1536)  |  Mathematics (1333)  |  Necessity (191)  |  Never (1087)  |  Object (422)  |  Observe (168)  |  People (1005)  |  Properly (20)  |  Proposition (123)  |  Pure (292)  |  Pure Mathematics (67)  |  Statement (142)  |  Willing (44)

Higher Mathematics is the art of reasoning about numerical relations between natural phenomena; and the several sections of Higher Mathematics are different modes of viewing these relations.
In Higher Mathematics for Students of Chemistry and Physics (1902), Prologue, xvii.
Science quotes on:  |  Art (657)  |  Different (577)  |  Higher Mathematics (6)  |  Mathematics (1333)  |  Mode (41)  |  Natural (796)  |  Numerical (39)  |  Phenomenon (319)  |  Reason (744)  |  Reasoning (207)  |  Relation (157)  |  Section (11)  |  Several (32)  |  View (488)

I think it would be desirable that this form of word [mathematics] should be reserved for the applications of the science, and that we should use mathematic in the singular to denote the science itself, in the same way as we speak of logic, rhetoric, or (own sister to algebra) music.
In Presidential Address to the British Association, Exeter British Association Report (1869); Collected Mathematical Papers, Vol. 2, 669.
Science quotes on:  |  Algebra (114)  |  Application (242)  |  Denote (5)  |  Desirable (33)  |  Form (960)  |  Logic (287)  |  Mathematic (3)  |  Mathematics (1333)  |  Music (130)  |  Reserve (24)  |  Rhetoric (12)  |  Same (157)  |  Science (3880)  |  Singular (23)  |  Sister (8)  |  Speak (232)  |  Think (1086)  |  Use (766)  |  Way (1216)  |  Word (622)

Mathematic is either Pure or Mixed: To Pure Mathematic belong those sciences which handle Quantity entirely severed from matter and from axioms of natural philosophy. These are two, Geometry and Arithmetic; the one handling quantity continued, the other dissevered. … Mixed Mathematic has for its subject some axioms and parts of natural philosophy, and considers quantity in so far as it assists to explain, demonstrate and actuate these.
In De Augmentis, Bk. 3; Advancement of Learning, Bk. 2.
Science quotes on:  |  Arithmetic (139)  |  Assist (9)  |  Axiom (63)  |  Belong (162)  |  Consider (416)  |  Continue (165)  |  Demonstrate (77)  |  Entirely (34)  |  Explain (322)  |  Far (154)  |  Geometry (259)  |  Handle (28)  |  Matter (801)  |  Mixed (6)  |  Natural (796)  |  Natural Philosophy (52)  |  Other (2236)  |  Part (222)  |  Philosophy (382)  |  Pure (292)  |  Quantity (132)  |  Science (3880)  |  Sever (2)  |  Subject (522)  |  Two (937)

Mathematics in general is fundamentally the science of self-evident things.
In Anwendung der Differenlial-und Integralrechnung auf Geometric (1902), 26.
Science quotes on:  |  Evident (91)  |  Fundamental (251)  |  General (511)  |  Mathematics (1333)  |  Science (3880)  |  Self (267)  |  Self-Evident (21)  |  Thing (1915)

Mathematics in its widest signification is the development of all types of formal, necessary, deductive reasoning.
In Universal Algebra (1898), Preface, vi.
Science quotes on:  |  All (4107)  |  Deductive (11)  |  Development (424)  |  Formal (34)  |  Mathematics (1333)  |  Necessary (363)  |  Reason (744)  |  Reasoning (207)  |  Signification (2)  |  Type (167)  |  Wide (96)

Mathematics is that form of intelligence in which we bring the objects of the phenomenal world under the control of the conception of quantity.
Offered as a provision definition, in 'The Departments of Mathematics, and their Mutual Relations', Journal of Speculative Philosophy (Apr 1871), 5, No. 2, 164.
Science quotes on:  |  Conception (154)  |  Control (167)  |  Definition (224)  |  Form (960)  |  Intelligence (213)  |  Mathematics (1333)  |  Object (422)  |  Phenomenon (319)  |  Quantity (132)  |  World (1778)

Mathematics is the science of the connection of magnitudes. Magnitude is anything that can be put equal or unequal to another thing. Two things are equal when in every assertion each may be replaced by the other.
In Stücke aus dem Lehrbuche der Arithmetik, Werke (1904), Bd. 2, 298.
Science quotes on:  |  Assertion (32)  |  Connection (162)  |  Equal (84)  |  Magnitude (83)  |  Mathematics (1333)  |  Other (2236)  |  Replace (31)  |  Science (3880)  |  Thing (1915)  |  Two (937)  |  Unequal (12)

Mathematics is the science of the functional laws and transformations which enable us to convert figured extension and rated motion into number.
In 'The Departments of Mathematics, and their Mutual Relations', Journal of Speculative Philosophy (Apr 1871), 5, No. 2, 170.
Science quotes on:  |  Convert (22)  |  Enable (119)  |  Extension (59)  |  Figure (160)  |  Functional (10)  |  Law (895)  |  Mathematics (1333)  |  Motion (312)  |  Number (701)  |  Rat (37)  |  Science (3880)  |  Transformation (69)

Mathematics is the science which draws necessary conclusions.
First line of Linear Associative Algebra: read before the National Academy of Sciences, Washington City (1870), 2.
Science quotes on:  |  Conclusion (255)  |  Definition (224)  |  Draw (137)  |  Mathematics (1333)  |  Necessary (363)  |  Science (3880)

Mathematics is the universal art apodictic.
Quoted by C.J. Keyser, in Lectures on Science, Philosophy and Art (1908), 13. [“Apodictic” means clearly established or beyond dispute. —Webmaster]
Science quotes on:  |  Apodictic (3)  |  Art (657)  |  Mathematics (1333)  |  Universal (189)

Mathematics, the science of the ideal, becomes the means of investigating, understanding and making known the world of the real. The complex is expressed in terms of the simple. From one point of view mathematics may be defined as the science of successive substitutions of simpler concepts for more complex.
In A Scrap-book of Elementary Mathematics (1908), 215.
Science quotes on:  |  Become (815)  |  Complex (188)  |  Concept (221)  |  Define (49)  |  Express (187)  |  Ideal (100)  |  Investigate (103)  |  Know (1519)  |  Known (454)  |  Making (300)  |  Mathematics (1333)  |  Mean (809)  |  Means (580)  |  More (2559)  |  Point (580)  |  Point Of View (82)  |  Real (149)  |  Science (3880)  |  Simple (406)  |  Substitution (13)  |  Successive (73)  |  Term (349)  |  Terms (184)  |  Understand (607)  |  Understanding (514)  |  View (488)  |  World (1778)

Mathematics—in a strict sense—is the abstract science which investigates deductively the conclusions implicit in the elementary conceptions of spatial and numerical relations.
In New English Dictionary as quoted in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-Book (1914), 5. This definition of Mathematics appeared in Oxford English Dictionary (1933), as “The abstract science which investigates deductively the conclusions implicit in the elementary conceptions of spatial and numerical relations, and which includes as its main divisions geometry, arithmetic, and algebra.”
Science quotes on:  |  Abstract (126)  |  Conception (154)  |  Conclusion (255)  |  Elementary (96)  |  Implicit (12)  |  Investigate (103)  |  Mathematics (1333)  |  Numerical (39)  |  Relation (157)  |  Science (3880)  |  Sense (770)  |  Spatial (8)  |  Strict (17)

Number, place, and combination … the three intersecting but distinct spheres of thought to which all mathematical ideas admit of being referred.
In Philosophical Magazine (1844), 84, 285; Collected Mathematical Papers, Vol. 1, 91.
Science quotes on:  |  Admit (45)  |  All (4107)  |  Being (1278)  |  Combination (144)  |  Distinct (97)  |  Idea (845)  |  Intersect (5)  |  Mathematics (1333)  |  Number (701)  |  Place (177)  |  Refer (14)  |  Sphere (116)  |  Thought (954)

Perhaps the least inadequate description of the general scope of modern Pure Mathematics—I will not call it a definition—would be to say that it deals with form, in a very general sense of the term; this would include algebraic form, functional relationship, the relations of order in any ordered set of entities such as numbers, and the analysis of the peculiarities of form of groups of operations.
In Presidential Address British Association for the Advancement of Science, Sheffield, Section A, Nature (1 Sep 1910), 84, 287.
Science quotes on:  |  Algebra (114)  |  Analysis (234)  |  Call (769)  |  Deal (188)  |  Definition (224)  |  Entity (35)  |  Form (960)  |  General (511)  |  Group (78)  |  Inadequate (19)  |  Include (90)  |  Mathematics (1333)  |  Modern (385)  |  Number (701)  |  Operation (213)  |  Operations (107)  |  Order (632)  |  Peculiar (113)  |  Pure (292)  |  Pure Mathematics (67)  |  Relation (157)  |  Relationship (104)  |  Say (984)  |  Scope (44)  |  Sense (770)  |  Set (394)  |  Term (349)  |  Will (2354)

Pure mathematics is a collection of hypothetical, deductive theories, each consisting of a definite system of primitive, undefined, concepts or symbols and primitive, unproved, but self-consistent assumptions (commonly called axioms) together with their logically deducible consequences following by rigidly deductive processes without appeal to intuition.
In 'Non-Euclidian Geometry of the Fourth Dimension', collected in Henry Parker Manning (ed.), The Fourth Dimension Simply Explained (1910), 58.
Science quotes on:  |  Appeal (45)  |  Assumption (92)  |  Axiom (63)  |  Call (769)  |  Collection (64)  |  Commonly (9)  |  Concept (221)  |  Consequence (207)  |  Consist (223)  |  Consistent (48)  |  Deductive (11)  |  Definite (110)  |  Follow (379)  |  Hypothetical (5)  |  Intuition (75)  |  Logic (287)  |  Mathematics (1333)  |  Primitive (75)  |  Process (423)  |  Pure (292)  |  Pure Mathematics (67)  |  Rigidly (4)  |  Self (267)  |  Self-Consistent (2)  |  Symbol (94)  |  System (537)  |  Theory (972)  |  Together (387)  |  Undefined (3)  |  Unproved (2)

Pure mathematics is not concerned with magnitude. It is merely the doctrine of notation of relatively ordered thought operations which have become mechanical.
In Schriften (1901), Zweiter Teil, 282.
Science quotes on:  |  Become (815)  |  Concern (228)  |  Doctrine (75)  |  Magnitude (83)  |  Mathematics (1333)  |  Mechanical (140)  |  Merely (316)  |  Notation (27)  |  Operation (213)  |  Operations (107)  |  Order (632)  |  Pure (292)  |  Pure Mathematics (67)  |  Relatively (7)  |  Thought (954)

Pure Mathematics is the class of all propositions of the form “p implies q,” where p and q are propositions containing one or more variables, the same in the two propositions, and neither p nor q contains any constants except logical constants. And logical constants are all notions definable in terms of the following: Implication, the relation of a term to a class of which it is a member, the notion of such that, the notion of relation, and such further notions as may be involved in the general notion of propositions of the above form. In addition to these, mathematics uses a notion which is not a constituent of the propositions which it considers, namely the notion of truth.
In 'Definition of Pure Mathematics', Principles of Mathematics (1903), 3.
Science quotes on:  |  Addition (66)  |  All (4107)  |  Class (164)  |  Consider (416)  |  Constant (144)  |  Constituent (45)  |  Definition (224)  |  Form (960)  |  General (511)  |  Implication (23)  |  Involved (90)  |  Logic (287)  |  Mathematics (1333)  |  More (2559)  |  Notion (113)  |  Proposition (123)  |  Pure (292)  |  Pure Mathematics (67)  |  Relation (157)  |  Term (349)  |  Terms (184)  |  Truth (1062)  |  Two (937)  |  Use (766)  |  Variable (34)

Quantity is that which is operated with according to fixed mutually consistent laws. Both operator and operand must derive their meaning from the laws of operation. In the case of ordinary algebra these are the three laws already indicated [the commutative, associative, and distributive laws], in the algebra of quaternions the same save the law of commutation for multiplication and division, and so on. It may be questioned whether this definition is sufficient, and it may be objected that it is vague; but the reader will do well to reflect that any definition must include the linear algebras of Peirce, the algebra of logic, and others that may be easily imagined, although they have not yet been developed. This general definition of quantity enables us to see how operators may be treated as quantities, and thus to understand the rationale of the so called symbolical methods.
In 'Mathematics', Encyclopedia Britannica (9th ed.).
Science quotes on:  |  Accord (36)  |  According (237)  |  Algebra (114)  |  Already (222)  |  Both (494)  |  Call (769)  |  Commutative (2)  |  Consistent (48)  |  Definition (224)  |  Derive (65)  |  Develop (268)  |  Distributive (2)  |  Division (65)  |  Do (1908)  |  Enable (119)  |  Fix (25)  |  General (511)  |  Include (90)  |  Law (895)  |  Linear (13)  |  Logic (287)  |  Meaning (235)  |  Method (506)  |  Methods (204)  |  Multiplication (44)  |  Must (1526)  |  Mutually (7)  |  Object (422)  |  Operate (17)  |  Operation (213)  |  Operator (3)  |  Ordinary (160)  |  Other (2236)  |  Charles Sanders Peirce (22)  |  Quantity (132)  |  Quaternion (9)  |  Question (622)  |  Rationale (7)  |  Reader (41)  |  Reflect (32)  |  Save (118)  |  See (1082)  |  Sufficient (128)  |  Understand (607)  |  Vague (47)  |  Will (2354)

The business of concrete mathematics is to discover the equations which express the mathematical laws of the phenomenon under consideration; and these equations are the starting-point of the calculus, which must obtain from them certain quantities by means of others.
In Positive Philosophy, Bk. 1, chap. 2.
Science quotes on:  |  Business (149)  |  Calculus (65)  |  Certain (550)  |  Concrete (51)  |  Consideration (139)  |  Discover (553)  |  Equation (132)  |  Express (187)  |  Law (895)  |  Mathematics (1333)  |  Mean (809)  |  Means (580)  |  Must (1526)  |  Obtain (163)  |  Other (2236)  |  Phenomenon (319)  |  Point (580)  |  Quantity (132)  |  Starting Point (14)

The critical mathematician has abandoned the search for truth. He no longer flatters himself that his propositions are or can be known to him or to any other human being to be true; and he contents himself with aiming at the correct, or the consistent. The distinction is not annulled nor even blurred by the reflection that consistency contains immanently a kind of truth. He is not absolutely certain, but he believes profoundly that it is possible to find various sets of a few propositions each such that the propositions of each set are compatible, that the propositions of each such set imply other propositions, and that the latter can be deduced from the former with certainty. That is to say, he believes that there are systems of coherent or consistent propositions, and he regards it his business to discover such systems. Any such system is a branch of mathematics.
In George Edward Martin, The Foundations of Geometry and the Non-Euclidean Plane (1982), 94. Also in Science (1912), New Series, 35, 107.
Science quotes on:  |  Abandon (68)  |  Absolutely (39)  |  Aim (165)  |  Annul (2)  |  Being (1278)  |  Belief (578)  |  Blur (8)  |  Branch (150)  |  Business (149)  |  Certain (550)  |  Certainty (174)  |  Coherent (13)  |  Compatible (4)  |  Consistency (31)  |  Consistent (48)  |  Contain (68)  |  Content (70)  |  Correct (87)  |  Critical (66)  |  Deduce (25)  |  Discover (553)  |  Distinction (72)  |  Find (999)  |  Former (137)  |  Himself (461)  |  Human (1470)  |  Human Being (176)  |  Immanently (2)  |  Imply (17)  |  Kind (557)  |  Know (1519)  |  Known (454)  |  Latter (21)  |  Long (789)  |  Mathematician (389)  |  Mathematics (1333)  |  Other (2236)  |  Possible (554)  |  Profoundly (13)  |  Proposition (123)  |  Reflection (91)  |  Regard (304)  |  Say (984)  |  Search (162)  |  Set (394)  |  System (537)  |  True (214)  |  Truth (1062)  |  Various (200)

The ideal of mathematics should be to erect a calculus to facilitate reasoning in connection with every province of thought, or of external experience, in which the succession of thoughts, or of events can be definitely ascertained and precisely stated. So that all serious thought which is not philosophy, or inductive reasoning, or imaginative literature, shall be mathematics developed by means of a calculus.
In Universal Algebra (1898), Preface.
Science quotes on:  |  All (4107)  |  Ascertain (38)  |  Calculus (65)  |  Connection (162)  |  Definitely (5)  |  Develop (268)  |  Erect (6)  |  Event (216)  |  Experience (470)  |  External (57)  |  Facilitate (5)  |  Ideal (100)  |  Imaginative (8)  |  Inductive (20)  |  Literature (105)  |  Mathematics (1333)  |  Mean (809)  |  Means (580)  |  Philosophy (382)  |  Precisely (92)  |  Province (35)  |  Reason (744)  |  Reasoning (207)  |  Serious (91)  |  State (491)  |  Succession (77)  |  Thought (954)

The ideas which these sciences, Geometry, Theoretical Arithmetic and Algebra involve extend to all objects and changes which we observe in the external world; and hence the consideration of mathematical relations forms a large portion of many of the sciences which treat of the phenomena and laws of external nature, as Astronomy, Optics, and Mechanics. Such sciences are hence often termed Mixed Mathematics, the relations of space and number being, in these branches of knowledge, combined with principles collected from special observation; while Geometry, Algebra, and the like subjects, which involve no result of experience, are called Pure Mathematics.
In The Philosophy of the Inductive Sciences (1868), Part 1, Bk. 2, chap. 1, sect. 4.
Science quotes on:  |  Algebra (114)  |  All (4107)  |  Arithmetic (139)  |  Astronomy (231)  |  Being (1278)  |  Branch (150)  |  Call (769)  |  Change (595)  |  Collect (16)  |  Combine (57)  |  Consideration (139)  |  Experience (470)  |  Extend (128)  |  External (57)  |  Form (960)  |  Geometry (259)  |  Idea (845)  |  Involve (90)  |  Knowledge (1536)  |  Large (394)  |  Law (895)  |  Mathematics (1333)  |  Mechanic (119)  |  Mechanics (132)  |  Mix (19)  |  Nature (1928)  |  Number (701)  |  Object (422)  |  Observation (560)  |  Observe (168)  |  Often (106)  |  Optics (23)  |  Phenomenon (319)  |  Portion (84)  |  Principle (510)  |  Pure (292)  |  Pure Mathematics (67)  |  Relation (157)  |  Result (678)  |  Science (3880)  |  Space (501)  |  Special (184)  |  Subject (522)  |  Term (349)  |  Theoretical (22)  |  Treat (35)  |  World (1778)

The object of pure mathematics is those relations which may be conceptually established among any conceived elements whatsoever by assuming them contained in some ordered manifold; the law of order of this manifold must be subject to our choice; the latter is the case in both of the only conceivable kinds of manifolds, in the discrete as well as in the continuous.
In Über das System der rein mathematischen Wissenschaften, Jahresbericht der Deutschen Mathematiker-Vereinigung, Bd. 1, 36. As quoted and cited in Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath’s Quotation-book (1914), 3.
Science quotes on:  |  Assume (39)  |  Both (494)  |  Choice (110)  |  Conceivable (28)  |  Conceive (99)  |  Concept (221)  |  Continuous (82)  |  Discrete (11)  |  Element (310)  |  Establish (57)  |  Kind (557)  |  Law (895)  |  Manifold (22)  |  Mathematics (1333)  |  Must (1526)  |  Object (422)  |  Order (632)  |  Pure (292)  |  Pure Mathematics (67)  |  Relation (157)  |  Subject (522)  |  Whatsoever (41)

The object of pure Physic is the unfolding of the laws of the intelligible world; the object of pure Mathematic that of unfolding the laws of human intelligence.
In 'On a theorem connected with Newton's Rule, etc.', Collected Mathematical Papers, 3, 424.
Science quotes on:  |  Human (1470)  |  Intelligence (213)  |  Intelligible (34)  |  Law (895)  |  Mathematic (3)  |  Object (422)  |  Physic (516)  |  Physics (533)  |  Pure (292)  |  Unfold (12)  |  Unfolding (16)  |  World (1778)

The purely formal sciences, logic and mathematics, deal with such relations which are independent of the definite content, or the substance of the objects, or at least can be. In particular, mathematics involves those relations of objects to each other that involve the concept of size, measure, number.
In Theorie der Complexen Zahlensysteme, (1867), 1. Translated by Webmaster using Google Translate from the original German, “Die rein formalen Wissenschaften, Logik und Mathematik, haben solche Relationen zu behandeln, welche unabhängig von dem bestimmten Inhalte, der Substanz der Objecte sind oder es wenigstens sein können.”
Science quotes on:  |  Concept (221)  |  Content (70)  |  Deal (188)  |  Definite (110)  |  Formal (34)  |  Independent (67)  |  Involve (90)  |  Logic (287)  |  Magnitude (83)  |  Mathematics (1333)  |  Measure (233)  |  Number (701)  |  Object (422)  |  Other (2236)  |  Particular (76)  |  Purely (110)  |  Relation (157)  |  Science (3880)  |  Substance (248)

The whole of Mathematics consists in the organization of a series of aids to the imagination in the process of reasoning.
In Universal Algebra (1898), 12.
Science quotes on:  |  Aid (97)  |  Consist (223)  |  Imagination (328)  |  Mathematics (1333)  |  Organization (114)  |  Process (423)  |  Reason (744)  |  Reasoning (207)  |  Series (149)  |  Whole (738)

There are three ruling ideas, three so to say, spheres of thought, which pervade the whole body of mathematical science, to some one or other of which, or to two or all three of them combined, every mathematical truth admits of being referred; these are the three cardinal notions, of Number, Space and Order.
Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space.
In 'A Probationary Lecture on Geometry, York British Association Report (1844), Part 2; Collected Mathematical Papers, Vol. 2, 5.
Science quotes on:  |  Abstract (126)  |  Admit (45)  |  Algebra (114)  |  All (4107)  |  Arithmetic (139)  |  Being (1278)  |  Body (537)  |  Business (149)  |  Cardinal (9)  |  Combine (57)  |  Evolution (593)  |  Exist (444)  |  Geometry (259)  |  Idea (845)  |  Mathematics (1333)  |  Notion (113)  |  Number (701)  |  Object (422)  |  Operation (213)  |  Operations (107)  |  Order (632)  |  Other (2236)  |  Pervade (10)  |  Predominate (7)  |  Property (169)  |  Refer (14)  |  Rule (295)  |  Say (984)  |  Science (3880)  |  Space (501)  |  Sphere (116)  |  Thought (954)  |  Truth (1062)  |  Two (937)  |  View (488)  |  Whole (738)

[Mathematics is] the study of ideal constructions (often applicable to real problems), and the discovery thereby of relations between the parts of these constructions, before unknown.
In 'Mathematics', Century Dictionary.
Science quotes on:  |  Applicable (31)  |  Construction (112)  |  Discovery (785)  |  Ideal (100)  |  Mathematics (1333)  |  Often (106)  |  Part (222)  |  Problem (679)  |  Real (149)  |  Relation (157)  |  Study (656)  |  Unknown (182)

[Mathematics] has for its object the indirect measurement of magnitudes, and it proposes to determine magnitudes by each other, according to the precise relations which exist between them.
In The Positive Philosophy of Auguste Comte, translated by Harriet Martineau, (1896), Vol. 1, 40.
Science quotes on:  |  Accord (36)  |  According (237)  |  Determine (144)  |  Exist (444)  |  Indirect (18)  |  Magnitude (83)  |  Mathematics (1333)  |  Measurement (174)  |  Object (422)  |  Other (2236)  |  Precise (68)  |  Propose (23)  |  Relation (157)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.