TODAY IN SCIENCE HISTORY ®  •  TODAYINSCI ®
Celebrating 24 Years on the Web
Find science on or your birthday

Today in Science History - Quickie Quiz
Who said: “The conservation of natural resources is the fundamental problem. Unless we solve that problem it will avail us little to solve all others.”
more quiz questions >>
Home > Category Index for Science Quotations > Category Index C > Category: Conservation Of Energy

Conservation Of Energy Quotes (30 quotes)


“Conservation” (the conservation law) means this … that there is a number, which you can calculate, at one moment—and as nature undergoes its multitude of changes, this number doesn't change. That is, if you calculate again, this quantity, it'll be the same as it was before. An example is the conservation of energy: there's a quantity that you can calculate according to a certain rule, and it comes out the same answer after, no matter what happens, happens.
'The Great Conservation Principles', The Messenger Series of Lectures, No. 3, Cornell University, 1964. From transcript of BBC programme (11 Dec 1964).
Science quotes on:  |  According (236)  |  Answer (389)  |  Calculate (58)  |  Calculation (134)  |  Certain (557)  |  Change (639)  |  Conservation (187)  |  Energy (373)  |  Happen (282)  |  Law (913)  |  Matter (821)  |  Mean (810)  |  Means (587)  |  Moment (260)  |  Multitude (50)  |  Nature (2017)  |  Number (710)  |  Quantity (136)  |  Rule (307)

[Helmholtz] is not a philosopher in the exclusive sense, as Kant, Hegel, Mansel are philosophers, but one who prosecutes physics and physiology, and acquires therein not only skill in developing any desideratum, but wisdom to know what are the desiderata, e.g., he was one of the first, and is one of the most active, preachers of the doctrine that since all kinds of energy are convertible, the first aim of science at this time. should be to ascertain in what way particular forms of energy can be converted into each other, and what are the equivalent quantities of the two forms of energy.
Letter to Lewis Campbell (21 Apr 1862). In P.M. Harman (ed.), The Scientific Letters and Papers of James Clerk Maxwell (1990), Vol. 1, 711.
Science quotes on:  |  Acquire (46)  |  Active (80)  |  Aim (175)  |  Ascertain (41)  |  Conversion (17)  |  Desideratum (5)  |  Doctrine (81)  |  Energy (373)  |  Equivalent (46)  |  Exclusive (29)  |  First (1302)  |  Form (976)  |  Hermann von Helmholtz (32)  |  Immanuel Kant (50)  |  Kind (564)  |  Know (1538)  |  Most (1728)  |  Other (2233)  |  Philosopher (269)  |  Physic (515)  |  Physics (564)  |  Physiology (101)  |  Preacher (13)  |  Prosecute (3)  |  Quantity (136)  |  Sense (785)  |  Skill (116)  |  Time (1911)  |  Two (936)  |  Way (1214)  |  Wisdom (235)

[Ignorance] of the principle of conservation of energy … does not prevent inventors without background from continually putting forward perpetual motion machines… Also, such persons undoubtedly have their exact counterparts in the fields of art, finance, education, and all other departments of human activity… persons who are unwilling to take the time and to make the effort required to find what the known facts are before they become the champions of unsupported opinions—people who take sides first and look up facts afterward when the tendency to distort the facts to conform to the opinions has become well-nigh irresistible.
From Evolution in Science and Religion (1927), 58-59. An excerpt from the book including this quote appears in 'New Truth and Old', Christian Education (Apr 1927), 10, No. 7, 394-395.
Science quotes on:  |  Activity (218)  |  Art (680)  |  Background (44)  |  Become (821)  |  Conform (15)  |  Conservation (187)  |  Continual (44)  |  Counterpart (11)  |  Department (93)  |  Distort (22)  |  Education (423)  |  Effort (243)  |  Energy (373)  |  Fact (1257)  |  Facts (553)  |  Field (378)  |  Finance (4)  |  Find (1014)  |  First (1302)  |  Forward (104)  |  Human (1512)  |  Ignorance (254)  |  Inventor (79)  |  Irresistible (17)  |  Known (453)  |  Look (584)  |  Machine (271)  |  Motion (320)  |  Opinion (291)  |  Other (2233)  |  People (1031)  |  Perpetual (59)  |  Perpetual Motion (14)  |  Person (366)  |  Prevent (98)  |  Prevention (37)  |  Principle (530)  |  Required (108)  |  Side (236)  |  Tendency (110)  |  Time (1911)  |  Unwilling (9)

Question: State what are the conditions favourable for the formation of dew. Describe an instrument for determining the dew point, and the method of using it.
Answer: This is easily proved from question 1. A body of gas as it ascends expands, cools, and deposits moisture; so if you walk up a hill the body of gas inside you expands, gives its heat to you, and deposits its moisture in the form of dew or common sweat. Hence these are the favourable conditions; and moreover it explains why you get warm by ascending a hill, in opposition to the well-known law of the Conservation of Energy.
Genuine student answer* to an Acoustics, Light and Heat paper (1880), Science and Art Department, South Kensington, London, collected by Prof. Oliver Lodge. Quoted in Henry B. Wheatley, Literary Blunders (1893), 179, Question 12. (*From a collection in which Answers are not given verbatim et literatim, and some instances may combine several students' blunders.)
Science quotes on:  |  Answer (389)  |  Ascend (30)  |  Ascension (4)  |  Body (557)  |  Common (447)  |  Condition (362)  |  Conservation (187)  |  Cooling (10)  |  Deposition (4)  |  Describe (132)  |  Description (89)  |  Determination (80)  |  Dew (10)  |  Easy (213)  |  Energy (373)  |  Examination (102)  |  Expand (56)  |  Expansion (43)  |  Explain (334)  |  Explanation (246)  |  Favor (69)  |  Form (976)  |  Formation (100)  |  Gas (89)  |  Heat (180)  |  Hill (23)  |  Howler (15)  |  Instrument (158)  |  Known (453)  |  Law (913)  |  Method (531)  |  Moisture (21)  |  Opposition (49)  |  Point (584)  |  Proof (304)  |  Question (649)  |  State (505)  |  Sweat (17)  |  Use (771)  |  Walk (138)  |  Warm (74)  |  Well-Known (4)  |  Why (491)

After seeking in vain for the construction of a perpetual motion machine, the relations were investigated which must subsist between the forces of nature if such a machine is to be impossible; and this inverted question led to the discovery of the law of the conservation of energy, which, again, explained the impossibility of perpetual motion in the sense originally intended.
Opening of Lecture (1900), 'Mathematische Probleme' (Mathematical Problems), to the International Congress of Mathematicians, Paris. From the original German reprinted in David Hilbert: Gesammelte Abhandlungen (Collected Treatises, 1970), Vol. 3. For full citation, see the quote that begins, “This conviction of the solvability…”, on the David Hilbert Quotes page on this website.
Science quotes on:  |  Conservation (187)  |  Construction (114)  |  Discovery (837)  |  Energy (373)  |  Explain (334)  |  Force (497)  |  Impossibility (60)  |  Impossible (263)  |  In Vain (12)  |  Intent (9)  |  Inverted (2)  |  Investigate (106)  |  Law (913)  |  Lead (391)  |  Machine (271)  |  Motion (320)  |  Must (1525)  |  Nature (2017)  |  Original (61)  |  Perpetual (59)  |  Perpetual Motion (14)  |  Question (649)  |  Relation (166)  |  Seek (218)  |  Sense (785)  |  Vain (86)

Conservation of energy also protects our environment.
…...
Science quotes on:  |  Conservation (187)  |  Energy (373)  |  Environment (239)  |  Protect (65)

I have long held an opinion, almost amounting to conviction, in common I believe with many other lovers of natural knowledge, that the various forms under which the forces of matter are made manifest have one common origin; or, in other words, are so directly related and mutually dependent, that they are convertible, as it were, one into another, and possess equivalents of power in their action.
Paper read to the Royal Institution (20 Nov 1845). 'On the Magnetization of Light and the Illumination of Magnetic Lines of Force', Series 19. In Experimental Researches in Electricity (1855), Vol. 3, 1. Reprinted from Philosophical Transactions (1846), 1.
Science quotes on:  |  Action (342)  |  Belief (615)  |  Common (447)  |  Conviction (100)  |  Dependence (46)  |  Electromagnetism (19)  |  Equivalent (46)  |  Force (497)  |  Form (976)  |  Knowledge (1647)  |  Long (778)  |  Manifestation (61)  |  Matter (821)  |  Mutual (54)  |  Natural (810)  |  Natural Science (133)  |  Opinion (291)  |  Origin (250)  |  Other (2233)  |  Possess (157)  |  Possession (68)  |  Power (771)  |  Relationship (114)  |  Various (205)  |  Word (650)

In no way can we get such an overwhelming idea of the grandeur of Nature than when we consider, that in accordance with the law of the conservation of energy, throughout the Infinite, the forces are in a perfect balance, and hence the energy of a single thought may determine the motion of a universe.
Lecture (Feb 1893) delivered before the Franklin Institute, Philadelphia, 'On Light and Other High Frequency Phenomena,' collected in Thomas Commerford Martin and Nikola Tesla, The Inventions, Researches and Writings of Nikola Tesla (1894), 298.
Science quotes on:  |  Balance (82)  |  Grandeur (35)  |  Infinite (243)  |  Motion (320)  |  Nature (2017)  |  Thought (995)  |  Universe (900)

In our day grand generalizations have been reached. The theory of the origin of species is but one of them. Another, of still wider grasp and more radical significance, is the doctrine of the Conservation of Energy, the ultimate philosophical issues of which are as yet but dimly seem-that doctrine which “binds nature fast in fate” to an extent not hitherto recognized, exacting from every antecedent its equivalent consequent, and bringing vital as well as physical phenomena under the dominion of that law of causal connexion which, so far as the human understanding has yet pierced, asserts itself everywhere in nature.
'Address Delivered Before The British Association Assembled at Belfast', (19 Aug 1874). Fragments of Science for Unscientific People: A Series of Detached Essays, Lectures, and Reviews (1892), Vol. 2, 1801.
Science quotes on:  |  Antecedent (5)  |  Assert (69)  |  Assertion (35)  |  Binding (9)  |  Bringing (10)  |  Cause (561)  |  Connection (171)  |  Consequence (220)  |  Consequent (19)  |  Conservation (187)  |  Doctrine (81)  |  Dominion (11)  |  Energy (373)  |  Equivalent (46)  |  Everywhere (98)  |  Exacting (4)  |  Extent (142)  |  Fate (76)  |  Generalization (61)  |  Grandness (2)  |  Grasp (65)  |  Human (1512)  |  Issue (46)  |  Law (913)  |  More (2558)  |  Nature (2017)  |  Origin (250)  |  Origin Of Species (42)  |  Phenomenon (334)  |  Philosophy (409)  |  Physical (518)  |  Physics (564)  |  Radical (28)  |  Reach (286)  |  Recognition (93)  |  Seeing (143)  |  Significance (114)  |  Species (435)  |  Still (614)  |  Theory (1015)  |  Ultimate (152)  |  Understanding (527)  |  Vital (89)  |  Vitality (24)

In the vestibule of the Manchester Town Hall are placed two life-sized marble statues facing each other. One of these is that of John Dalton … the other that of James Prescott Joule. … Thus honour is done to Manchester’s two greatest sons—to Dalton, the founder of modern Chemistry and of the Atomic Theory, and the laws of chemical-combining proportions; to Joule, the founder of modern Physics and the discoverer of the Law of Conservation of Energy. The one gave to the world the final and satisfactory proof … that in every kind of chemical change no loss of matter occurs; the other proved that in all the varied modes of physical change, no loss of energy takes place.
In John Dalton and the Rise of Modern Chemistry (1895), 7.
Science quotes on:  |  Atomic Theory (16)  |  Change (639)  |  Chemical (303)  |  Chemical Change (8)  |  Chemistry (376)  |  Combination (150)  |  Conservation (187)  |  Conservation Of Mass (2)  |  John Dalton (25)  |  Discoverer (43)  |  Energy (373)  |  Final (121)  |  Founder (26)  |  Greatest (330)  |  Honour (58)  |  James Prescott Joule (7)  |  Kind (564)  |  Law (913)  |  Life (1870)  |  Loss (117)  |  Manchester (6)  |  Marble (21)  |  Matter (821)  |  Modern (402)  |  Modern Physics (23)  |  Occur (151)  |  Other (2233)  |  Physic (515)  |  Physical (518)  |  Physical Change (5)  |  Physics (564)  |  Proof (304)  |  Proportion (140)  |  Statue (17)  |  Theory (1015)  |  Town Hall (2)  |  Two (936)  |  Vestibule (2)  |  World (1850)

It is the destiny of wine to be drunk, and it is the destiny of glucose to be oxidized. But it was not oxidized immediately: its drinker kept it in his liver for more than a week, well curled up and tranquil, as a reserve aliment for a sudden effort; an effort that he was forced to make the following Sunday, pursuing a bolting horse. Farewell to the hexagonal structure: in the space of a few instants the skein was unwound and became glucose again, and this was dragged by the bloodstream all the way to a minute muscle fiber in the thigh, and here brutally split into two molecules of lactic acid, the grim harbinger of fatigue: only later, some minutes after, the panting of the lungs was able to supply the oxygen necessary to quietly oxidize the latter. So a new molecule of carbon dioxide returned to the atmosphere, and a parcel of the energy that the sun had handed to the vine-shoot passed from the state of chemical energy to that of mechanical energy, and thereafter settled down in the slothful condition of heat, warming up imperceptibly the air moved by the running and the blood of the runner. 'Such is life,' although rarely is it described in this manner: an inserting itself, a drawing off to its advantage, a parasitizing of the downward course of energy, from its noble solar form to the degraded one of low-temperature heat. In this downward course, which leads to equilibrium and thus death, life draws a bend and nests in it.
The Periodic Table (1975), trans. Raymond Rosenthal (1984), 192-3.
Science quotes on:  |  Acid (83)  |  Advantage (144)  |  Air (366)  |  Alcohol (22)  |  Atmosphere (117)  |  Blood (144)  |  Carbon (68)  |  Carbon Dioxide (25)  |  Chemical (303)  |  Chemical Energy (3)  |  Condition (362)  |  Course (413)  |  Death (406)  |  Destiny (54)  |  Down (455)  |  Draw (140)  |  Drawing (56)  |  Drunk (10)  |  Effort (243)  |  Energy (373)  |  Equilibrium (34)  |  Fatigue (13)  |  Fiber (16)  |  Form (976)  |  Glucose (2)  |  Heat (180)  |  Horse (78)  |  Immediately (115)  |  Instant (46)  |  Lactic Acid (2)  |  Lead (391)  |  Life (1870)  |  Liver (22)  |  Low (86)  |  Lung (37)  |  Mechanical (145)  |  Minute (129)  |  Molecule (185)  |  More (2558)  |  Muscle (47)  |  Necessary (370)  |  Nest (26)  |  New (1273)  |  Noble (93)  |  Oxidation (8)  |  Oxygen (77)  |  Pass (241)  |  Plant (320)  |  Pursuing (27)  |  Reserve (26)  |  Return (133)  |  Running (61)  |  Settled (34)  |  Space (523)  |  State (505)  |  Structure (365)  |  Sudden (70)  |  Sun (407)  |  Supply (100)  |  Temperature (82)  |  Two (936)  |  Warming (24)  |  Way (1214)  |  Week (73)  |  Wine (39)

My position is perfectly definite. Gravitation, motion, heat, light, electricity and chemical action are one and the same object in various forms of manifestation.
Annalen der Chemie und der Pharmacie (1842). Trans. A. S. Eve and C. H. Creasey, The Life and Work of John Tyndall (1945), 94.
Science quotes on:  |  Action (342)  |  Chemical (303)  |  Definite (114)  |  Electricity (168)  |  Form (976)  |  Gravitation (72)  |  Heat (180)  |  Light (635)  |  Manifestation (61)  |  Motion (320)  |  Object (438)  |  Reaction (106)  |  Various (205)

Nature abhors a hero. For one thing, he violates the law of conservation of energy. For another, how can it be the survival of the fittest when the fittest keeps putting himself in situations where he is most likely to be creamed?
…...
Science quotes on:  |  Abhor (8)  |  Conservation (187)  |  Cream (6)  |  Energy (373)  |  Fit (139)  |  Hero (45)  |  Himself (461)  |  Keep (104)  |  Law (913)  |  Likely (36)  |  Most (1728)  |  Nature (2017)  |  Situation (117)  |  Survival (105)  |  Survival Of The Fittest (43)  |  Thing (1914)  |  Violate (4)

Science has found that nothing can disappear without a trace. Nature does not know extinction. All it knows is transformation.
In This Week Magazine (24 Jan 1960), 2. As quoted in Martin A. Recio, From the Threshold of Heaven (2008), 102.
Science quotes on:  |  Disappear (84)  |  Evolution (635)  |  Extinction (80)  |  Know (1538)  |  Nature (2017)  |  Nothing (1000)  |  Trace (109)  |  Transformation (72)

Strict conservation of energy in the elementary process had thus been confirmed also by a negative experiment.
…...
Science quotes on:  |  Confirm (58)  |  Conservation (187)  |  Elementary (98)  |  Energy (373)  |  Experiment (736)  |  Negative (66)  |  Process (439)  |  Strict (20)

Suppose we take a quantity of heat and change it into work. In doing so, we haven’t destroyed the heat, we have only transferred it to another place or perhaps changed it into another energy form.
From 'In the Game of Energy and Thermodynamics You Can’t Even Break Even', Smithsonian (Aug 1970), 1, No. 5, 6.
Science quotes on:  |  Change (639)  |  Destroy (189)  |  Doing (277)  |  Energy (373)  |  Form (976)  |  Heat (180)  |  Quantity (136)  |  Suppose (158)  |  Thermodynamics (40)  |  Transfer (21)  |  Work (1402)

The coal on your grate gives out in decomposing to-day exactly the same amount of light and heat which was taken from the sunshine in its formation in the leaves and boughs of the antediluvian tree.
In 'Perpetual Forces', North American Review (1877), No. 125. Collected in Ralph Waldo Emerson and James Elliot Cabot (ed.), Lectures and Biographical Sketches (1883), 60.
Science quotes on:  |  Amount (153)  |  Antediluvian (5)  |  Bough (10)  |  Coal (64)  |  Decompose (10)  |  Formation (100)  |  Heat (180)  |  Leaf (73)  |  Light (635)  |  Sunshine (12)  |  Tree (269)

The fall of a given weight from a height of around 365 meters corresponds to the heating of an equal weight of water from 0° to 1°.
'Bemerkungen über die Käfte der unbelebten Natur', Annalen der Chemie und Pharmacie (1842), 42:2, 29. Trans. Kenneth L. Caneva, Robert Mayer and the Conservation of Energy (1993), 25.
Science quotes on:  |  Fall (243)  |  Heat (180)  |  Water (503)  |  Weight (140)

The law of conservation of energy tells us we can't get something for nothing, but we refuse to believe it.
In Isaac Asimov's Book of Science and Nature Quotations (1988), 75.
Science quotes on:  |  Belief (615)  |  Conservation (187)  |  Energy (373)  |  Law (913)  |  Nothing (1000)  |  Refuse (45)  |  Something (718)  |  Tell (344)

The law of conservation rigidly excludes both creation and annihilation. Waves may change to ripples, and ripples to waves,—magnitude may be substituted for number, and number for magnitude,—asteroids may aggregate to suns, suns may resolve themselves into florae and faunae, and florae and faunae melt in air,—the flux of power is eternally the same. It rolls in music through the ages, and all terrestrial energy,—the manifestations of life, as well as the display of phenomena, are but the modulations of its rhythm.
Conclusion to lecture 12 (10 Apr 1862) at the Royal Institution, collected in Heat Considered as a Mode of Motion: Being a Course of Twelve Lectures (1863), 449.
Science quotes on:  |  Age (509)  |  Aggregate (24)  |  Aggregation (6)  |  Air (366)  |  Annihilation (15)  |  Asteroid (19)  |  Both (496)  |  Change (639)  |  Conservation (187)  |  Creation (350)  |  Display (59)  |  Energy (373)  |  Exclusion (16)  |  Fauna (13)  |  Flora (9)  |  Flux (21)  |  Law (913)  |  Life (1870)  |  Magnitude (88)  |  Manifestation (61)  |  Melting (6)  |  Modulation (3)  |  Music (133)  |  Number (710)  |  Phenomenon (334)  |  Power (771)  |  Resolution (24)  |  Resolve (43)  |  Rhythm (21)  |  Rigidity (5)  |  Ripple (12)  |  Roll (41)  |  Substitution (16)  |  Sun (407)  |  Terrestrial (62)  |  Themselves (433)  |  Through (846)  |  Wave (112)

The law of the conservation of energy is already known, viz. that the sum of the actual and potential energies in the universe is unchangeable.
'On the General Law of the Transformation of Energy', Philosophical Magazine (1853), 5, 106.
Science quotes on:  |  Actual (118)  |  Already (226)  |  Conservation (187)  |  Energy (373)  |  Knowledge (1647)  |  Known (453)  |  Law (913)  |  Potential (75)  |  Sum (103)  |  Universe (900)

The most convincing proof of the conversion of heat into living force [vis viva] has been derived from my experiments with the electro-magnetic engine, a machine composed of magnets and bars of iron set in motion by an electrical battery. I have proved by actual experiment that, in exact proportion to the force with which this machine works, heat is abstracted from the electrical battery. You see, therefore, that living force may be converted into heat, and that heat may be converted into living force, or its equivalent attraction through space.
'On Matter, Living Force, and Heat' (1847). In The Scientific Papers of James Prescott Joule (1884), Vol. 1, 270-1.
Science quotes on:  |  Abstract (141)  |  Actual (118)  |  Attraction (61)  |  Battery (12)  |  Conversion (17)  |  Electrical (57)  |  Electricity (168)  |  Electromagnetism (19)  |  Engine (99)  |  Equivalent (46)  |  Experiment (736)  |  Force (497)  |  Heat (180)  |  Iron (99)  |  Life (1870)  |  Living (492)  |  Machine (271)  |  Magnet (22)  |  Magnetic (44)  |  Most (1728)  |  Motion (320)  |  Proof (304)  |  Proportion (140)  |  See (1094)  |  Set (400)  |  Space (523)  |  Through (846)  |  Work (1402)

The sun has lost no beams, the earth no elements ; gravity is as adhesive, heat as expansive, light as joyful, air as virtuous, water as medicinal as on the first day. There is no loss, only transference. When the heat is less here it is not lost, but more heat is there.
In 'Perpetual Forces', North American Review (1877), No. 125. Collected in Ralph Waldo Emerson and James Elliot Cabot (ed.), Lectures and Biographical Sketches (1883), 61.
Science quotes on:  |  Adhesive (2)  |  Air (366)  |  Beam (26)  |  Earth (1076)  |  Element (322)  |  Expansive (5)  |  First (1302)  |  Gravity (140)  |  Heat (180)  |  Light (635)  |  Loss (117)  |  Medicine (392)  |  More (2558)  |  Sun (407)  |  Transfer (21)  |  Virtuous (9)  |  Water (503)

The total quantity of all the forces capable of work in the whole universe remains eternal and unchanged throughout all their changes. All change in nature amounts to this, that force can change its form and locality, without its quantity being changed. The universe possesses, once for all, a store of force which is not altered by any change of phenomena, can neither be increased nor diminished, and which maintains any change which takes place on it.
The Conservation of Energy, from a Lecture, 1863. Trans. Edmund Blair Bolles (ed.), Galileo's Commandment: An Anthology of Science Writing (2000), 407.
Science quotes on:  |  Alter (64)  |  Altered (32)  |  Amount (153)  |  Being (1276)  |  Capable (174)  |  Change (639)  |  Eternal (113)  |  Force (497)  |  Form (976)  |  Maintain (105)  |  Nature (2017)  |  Quantity (136)  |  Remain (355)  |  Store (49)  |  Throughout (98)  |  Total (95)  |  Universe (900)  |  Whole (756)  |  Work (1402)

There is a conservation of matter and of energy, there may be a conservation of life; or if not of life, of something which transcends life.
Christopher: A Study in Human Personality (1918), 68.
Science quotes on:  |  Conservation (187)  |  Conservation Of Matter (7)  |  Energy (373)  |  Life (1870)  |  Matter (821)  |  Something (718)  |  Transcend (27)

There is deposited in them [plants] an enormous quantity of potential energy [Spannkräfte], whose equivalent is provided to us as heat in the burning of plant substances. So far as we know at present, the only living energy [lebendige Kraft] absorbed during plant growth are the chemical rays of sunlight… Animals take up oxygen and complex oxidizable compounds made by plants, release largely as combustion products carbonic acid and water, partly as simpler reduced compounds, thus using a certain amount of chemical potential energy to produce heat and mechanical forces. Since the latter represent a relatively small amount of work in relation to the quantity of heat, the question of the conservation of energy reduces itself roughly to whether the combustion and transformation of the nutritional components yields the same amount of heat released by animals.
Wissenschaftliche Abhandlungen (1847), 66. Trans. Joseph S. Fruton, Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology (1999), 247.
Science quotes on:  |  Absorb (54)  |  Acid (83)  |  Amount (153)  |  Animal (651)  |  Burning (49)  |  Certain (557)  |  Chemical (303)  |  Combustion (22)  |  Complex (202)  |  Component (51)  |  Compound (117)  |  Conservation (187)  |  Energy (373)  |  Equivalent (46)  |  Force (497)  |  Growth (200)  |  Heat (180)  |  Know (1538)  |  Living (492)  |  Mechanical (145)  |  Oxygen (77)  |  Plant (320)  |  Potential (75)  |  Potential Energy (5)  |  Present (630)  |  Product (166)  |  Quantity (136)  |  Question (649)  |  Ray (115)  |  Reduce (100)  |  Release (31)  |  Represent (157)  |  Small (489)  |  Solar Energy (21)  |  Substance (253)  |  Sunlight (29)  |  Transformation (72)  |  Water (503)  |  Work (1402)  |  Yield (86)

There is no force inherent in living matter, no vital force independent of and differing from the cosmic forces; the energy which living matter gives off is counterbalanced by the energy which it receives.
In Disease and its Causes (1913), 10-11.
Science quotes on:  |  Cosmic (74)  |  Counterbalance (4)  |  Energy (373)  |  Force (497)  |  Inherent (43)  |  Life (1870)  |  Living (492)  |  Matter (821)  |  Receive (117)  |  Vital (89)  |  Vital Force (7)

To Nature nothing can be added; from Nature nothing can be taken away; the sum of her energies is constant, and the utmost man can do in the pursuit of physical truth, or in the applications of physical knowledge, is to shift the constituents of the never-varying total. The law of conservation rigidly excludes both creation and annihilation. Waves may change to ripples, and ripples to waves; magnitude may be substituted for number, and number for magnitude; asteroids may aggregate to suns, suns may resolve themselves into florae and faunae, and floras and faunas melt in air: the flux of power is eternally the same. It rolls in music through the ages, and all terrestrial energy—the manifestations of life as well as the display of phenomena—are but the modulations of its rhythm.
Conclusion of Heat Considered as a Mode of Motion: Being a Course of Twelve Lectures Delivered at the Royal Institution of Great Britain in the Season of 1862 (1863), 449.
Science quotes on:  |  Add (42)  |  Age (509)  |  Aggregate (24)  |  Air (366)  |  Annihilation (15)  |  Application (257)  |  Asteroid (19)  |  Both (496)  |  Change (639)  |  Conservation (187)  |  Constant (148)  |  Constituent (47)  |  Creation (350)  |  Display (59)  |  Do (1905)  |  Energy (373)  |  Eternally (4)  |  Exclude (8)  |  Fauna (13)  |  Flora (9)  |  Flux (21)  |  Knowledge (1647)  |  Law (913)  |  Life (1870)  |  Magnitude (88)  |  Man (2252)  |  Manifestation (61)  |  Melt (16)  |  Modulation (3)  |  Music (133)  |  Nature (2017)  |  Never (1089)  |  Nothing (1000)  |  Number (710)  |  Phenomenon (334)  |  Physical (518)  |  Power (771)  |  Pursuit (128)  |  Resolve (43)  |  Rhythm (21)  |  Ripple (12)  |  Roll (41)  |  Same (166)  |  Shift (45)  |  Substitute (47)  |  Sum (103)  |  Sun (407)  |  Take Away (5)  |  Terrestrial (62)  |  Themselves (433)  |  Through (846)  |  Total (95)  |  Truth (1109)  |  Wave (112)

We have one great guiding principle which, like the pillar of cloud by day, and the pillar of fire by night, will conduct us, as Moses and the Israelites were once conducted, to an eminence from which we can survey the promised scientific future. That principle is the conservation of energy.
In 'What is Electricity?', Popular Science Monthly (Nov 1884), 26, 77.
Science quotes on:  |  Cloud (111)  |  Conduct (70)  |  Conservation (187)  |  Eminence (25)  |  Energy (373)  |  Fire (203)  |  Future (467)  |  Great (1610)  |  Guide (107)  |  Israel (6)  |  Moses (8)  |  Night (133)  |  Pillar (10)  |  Principle (530)  |  Promise (72)  |  Scientific (955)  |  Survey (36)  |  Will (2350)

Work done on any system of bodies (in Newton’s statement, the parts of any machine) has its equivalent in work done against friction, molecular forces, or gravity, if there be no acceleration; but if there be acceleration, part of the work is expended in overcoming the resistance to acceleration, and the additional kinetic energy developed is equivalent to the work so spent.
In William Thomson and Peter Guthrie Tait, Treatise on Natural Philosophy (1867), Vol. 1, 186.
Science quotes on:  |  Acceleration (12)  |  Against (332)  |  Body (557)  |  Develop (278)  |  Energy (373)  |  Equivalent (46)  |  Force (497)  |  Friction (14)  |  Gravity (140)  |  Kinetic (12)  |  Kinetic Energy (3)  |  Machine (271)  |  Molecular Force (2)  |  Sir Isaac Newton (363)  |  Resistance (41)  |  Spent (85)  |  Statement (148)  |  System (545)  |  Work (1402)


Carl Sagan Thumbnail In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion. (1987) -- Carl Sagan
Quotations by:Albert EinsteinIsaac NewtonLord KelvinCharles DarwinSrinivasa RamanujanCarl SaganFlorence NightingaleThomas EdisonAristotleMarie CurieBenjamin FranklinWinston ChurchillGalileo GalileiSigmund FreudRobert BunsenLouis PasteurTheodore RooseveltAbraham LincolnRonald ReaganLeonardo DaVinciMichio KakuKarl PopperJohann GoetheRobert OppenheimerCharles Kettering  ... (more people)

Quotations about:Atomic  BombBiologyChemistryDeforestationEngineeringAnatomyAstronomyBacteriaBiochemistryBotanyConservationDinosaurEnvironmentFractalGeneticsGeologyHistory of ScienceInventionJupiterKnowledgeLoveMathematicsMeasurementMedicineNatural ResourceOrganic ChemistryPhysicsPhysicianQuantum TheoryResearchScience and ArtTeacherTechnologyUniverseVolcanoVirusWind PowerWomen ScientistsX-RaysYouthZoology  ... (more topics)
Sitewide search within all Today In Science History pages:
Visit our Science and Scientist Quotations index for more Science Quotes from archaeologists, biologists, chemists, geologists, inventors and inventions, mathematicians, physicists, pioneers in medicine, science events and technology.

Names index: | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

Categories index: | 1 | 2 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
Thank you for sharing.
- 100 -
Sophie Germain
Gertrude Elion
Ernest Rutherford
James Chadwick
Marcel Proust
William Harvey
Johann Goethe
John Keynes
Carl Gauss
Paul Feyerabend
- 90 -
Antoine Lavoisier
Lise Meitner
Charles Babbage
Ibn Khaldun
Euclid
Ralph Emerson
Robert Bunsen
Frederick Banting
Andre Ampere
Winston Churchill
- 80 -
John Locke
Bronislaw Malinowski
Bible
Thomas Huxley
Alessandro Volta
Erwin Schrodinger
Wilhelm Roentgen
Louis Pasteur
Bertrand Russell
Jean Lamarck
- 70 -
Samuel Morse
John Wheeler
Nicolaus Copernicus
Robert Fulton
Pierre Laplace
Humphry Davy
Thomas Edison
Lord Kelvin
Theodore Roosevelt
Carolus Linnaeus
- 60 -
Francis Galton
Linus Pauling
Immanuel Kant
Martin Fischer
Robert Boyle
Karl Popper
Paul Dirac
Avicenna
James Watson
William Shakespeare
- 50 -
Stephen Hawking
Niels Bohr
Nikola Tesla
Rachel Carson
Max Planck
Henry Adams
Richard Dawkins
Werner Heisenberg
Alfred Wegener
John Dalton
- 40 -
Pierre Fermat
Edward Wilson
Johannes Kepler
Gustave Eiffel
Giordano Bruno
JJ Thomson
Thomas Kuhn
Leonardo DaVinci
Archimedes
David Hume
- 30 -
Andreas Vesalius
Rudolf Virchow
Richard Feynman
James Hutton
Alexander Fleming
Emile Durkheim
Benjamin Franklin
Robert Oppenheimer
Robert Hooke
Charles Kettering
- 20 -
Carl Sagan
James Maxwell
Marie Curie
Rene Descartes
Francis Crick
Hippocrates
Michael Faraday
Srinivasa Ramanujan
Francis Bacon
Galileo Galilei
- 10 -
Aristotle
John Watson
Rosalind Franklin
Michio Kaku
Isaac Asimov
Charles Darwin
Sigmund Freud
Albert Einstein
Florence Nightingale
Isaac Newton


by Ian Ellis
who invites your feedback
Thank you for sharing.
Today in Science History
Sign up for Newsletter
with quiz, quotes and more.